Quantcast
Channel: 蟑螂 – PanSci 泛科學
Viewing all 38 articles
Browse latest View live

右撇子蟑螂

$
0
0

當我們輕開起廚房的燈光看到一隻蟑螂倉皇逃向陰暗角落時,我們會感到一股嫌惡的反感。但一個新的研究發現,大部分的人類與這種卡夫卡小說裡的恐怖生物共同享有一個基本的特徵,那就是:慣用手/方向,而這並不是因為人類和蟑螂親緣關係太近的原因。

圖片來自ScienceShot

研究學者發現,將蟑螂放入Y型管內並使用香草或乙醇等味道來引誘昆蟲冒險經過Y型管分叉點時,研究學者同時記錄下昆蟲選擇的方向。蟑螂利用觸鬚在叉路優先選擇向右邊的次數佔了57 %。即使在科學者切斷了其中一根蟑螂用來感受觸覺和嗅覺的感知觸鬚後,這種偏右側的喜好仍然存在。這項發現會增加越來越多的證據說明:即使最微小的腦部仍然有方向偏好性,並會發表在即將出版的期刊 Journal of Insect Behavior 上。這也可以幫助生物工程方面想用來控制或搜索蟑螂,以及達到防治病蟲害。

資料來源:ScienceShot: Cockroaches Prefer Right Turns


蟑螂腳的神經律動!The Cockroach Beatbox

$
0
0


腦科學的研究進步神速,但是神經科學的實驗總是讓人覺得離生活遙遠,好像只有非常貴重的儀器還有非常複雜的樣品處理才有可能在實驗室量測到神經細胞的反應。這個演講做了一個很好好的展示,怎麼利用日常生活都看到的的生物,蟑螂,還有不難架設的裝置,來進行真正的神經科學研究。

首先抓起蟑螂(@_@)丟到冰水裡,蟑螂就會乖乖的不動休息了,然後剪下蟑螂的一隻腳。蟑螂的腳毛上有神經細細胞負責傳遞震動給蟑螂的腦,所以只要把腳用兩個大頭針固定住,接上訊號放大器,就可以看到蟑螂的腳是怎麼把神經訊號傳送出來。在很多噪聲中,偶爾會有比較大的神經訊號spike,因為腳毛細細胞是偵測震動,所以只要吹吹風就可以改變輸出spike的數目,蟑螂就是用spike的數目來偵測環境震動的強度。

當然蟑螂的腳也會在收到腦的電訊號時運動來逃跑,這時候可以把隨身聽的音源線接給蟑螂腳,就可以看到蟑螂腳隨著音樂抖動起舞。 當然這樣的實驗(如果想做的跟展示的人一樣) 還是需要一點點電子基礎來做簡單訊號放大跟擷取,不過其實也不真的困難,或許有心的教師或是同學可以在課堂上做出類似的展示也說不定 !

搜救英雄 生化電子蟑螂

$
0
0

北卡羅萊納州立大學(North Carolina State University)iBionics實驗室的科學家開發1種技術,能準確控制蟑螂爬行的方向,期待未來能應用到搜救任務中。

電子及電腦工程學系的助理教授巴扎克和博士候選人拉提夫,設計了1個小型的「背包」,掛在馬達加斯加蟑螂(Gromphadorhina portentosa)的背後。「背包」包含一小塊電路板、無線接收器、電極還有電池,能產生電流,控制蟑螂往左或右。

「其實就跟騎馬一樣,蟑螂在正常情況下爬行,然後我們送電流刺激它的觸角,讓它以為遇到障礙。」巴扎克在接受《美國科學人》(Scientific American)採訪時表示,「因為蟑螂靠觸角來感測障礙,當觸角『撞到』阻礙時,就會往另一個方向移動。」

這項發明在第44屆IEEE國際年會中發表,因為「生化電子蟑螂」能在險惡的地形上巡邏,很適合搜尋災區的受難者,對救災任務將很有幫助。

震災中災民被困在崩塌的建築瓦礫堆中,搜救蟑螂體積小、能感測障礙物,或許能夠幫助搜救。

除了電子蟑螂以外,iBionics實驗室也針對電子蛾進行相同研究,令其可擔任飛行任務。在此之前,2010年柏克萊大學的工程師馬哈.別茲(Michel M. Maharbiz)和早稲田大學的佐藤(Hirotaka Sato)亦在拖瓜塔花金龜(Mecynorrhina torquata)上裝置電子晶片,控制它飛行的方向。

昆蟲的神經系統及行為相對脊椎動物簡單,且電子零件日漸微小,未來可以有更多「蟲機介面」整合的例子及應用,或許各式昆蟲賽博格(Insect Cyborgs) 將在下一場大地震時派上用場。

(本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!)

資料來源:

臺灣大學BioRoLa實驗室六足仿生機器人現身!

$
0
0

採訪/謝瑩霖‧協助取材/美商國家儀器股份有限公司

由臺灣大學BioRoLa實驗室製作的輪足複合機器人(Quattroped)與六足仿生機器人(miniRHex),以獨特的運動方式來適應各種地形,提供了不同於以往的觀點,讓大家對機器人有更多樣化的想像。本篇將為各位更詳細的介紹這兩臺頗具特色的機器人。

(左圖為臺大機械所林沛群老師。)

【以「仿生機器人」為主軸,取材自生物步態】

由臺灣大學機械所林沛群老師所帶領的仿生機器人實驗室(BioRoLa),主要研究領域是以「仿生機器人」為主軸,研究機器人足部運動系統。其中最主要的兩臺機器人為六足仿生機器人(miniRHex)與輪足複合機器人(Quattroped),皆是以特殊的足部結構為特色的機器人。

林沛群老師說:「輪跟足之間有很大的差異,人在發展環境的過程中,若要使用輪必定要先將路剷平,所以輪是人創造出來的;但如果是生物體在自然且未開發的環境裡,經過時間的証實,演化出來最好用的還是足,這也是為什麼生物體幾乎是使用足來行走。而在日本機器人發展主要以人形為主,反倒是在美國機器人研究主要是輪型,而我是將研究的重點放在足部的運動。」

而輪足複合機器人(Quattroped)與六足仿生機器人(miniRHex)最主要的取材對象是「生物的步態」,林沛群老師根據生物在自然界中行走的模式與方法,製作出「仿生」機器人。以下將分別為大家介紹這兩臺機器人的獨特之處。

六足仿生機器人(miniRHex)

六足仿生機器人藉由其多種步態來行走,可行走於崎嶇不平的路面、跨越障礙、爬上樓梯及斜坡。這臺六足機器人的行走模式是參考在日常生活中,人們總是對敬而遠之的生物──蟑螂。林老師說:「我在美國時,與一位柏克萊UC-Berkeley專門研究蟑螂運動的教授Prof. Robert Full討論時發現,蟑螂看起來簡單,但實際上卻有很大的學問。牠們只須透過足部簡單的交互運動,就能前進以及越過障礙,這其中必定有值得我們學習的部分。」

目前機器人的步態包含前進及後退,在速度上又可分為一般行走、慢跑及高速奔跑,但更特別的是不需足部翻轉的蹬跳前進。而攀爬方面已可克服斜坡及樓梯,另外較為有趣的步態是利用機腹平坦部分來滑下樓梯,以及兩組足部反向運動的原地旋轉和足部瞬間出力的跳躍,現今林老師仍在努力於步態的開發,以提升機器人對於各種環境的適應性。

六足仿生機器人工程三視圖。


▲六足仿生機器人。

輪足複合機器人(Quattroped)

林沛群老師實驗室的另一臺機器人──輪足複合機器人(Quattroped)是一臺不論在室內或室外都可自由運行的機器人,這臺複合式機器人的輪和足使用同一組動力來源,藉由「轉換機構」可將輪足切換成足部或是輪型兩種不同的移動模式。相對於前面提到的六足仿生機器人,可輪足變換的好處在於,平面時以輪的方式來移動,較為省力也可提升速度。

但由於輪、足兩者運動模式所需的軸心不同,於是必須透過「轉換機構」來切換軸心點。以輪移動模式時,輪圈與地面相接觸的點則落在軸心點的正下方固定距離處;但在足部移動模式中,由於足部運動一般為週期性的向前擺動,軸心點與地面相接觸點並未依循特定的規則,所以在足部的週期運動中,足部對地面的相對位置會呈現頻繁但不固定的變化。

基於上述的原因,林老師與學生們設計了一個新式的轉換機構,此機構可以直接控制輪圈的外形以及輪心與關節的相對位置。由於輪圈本身是二維平面物體,為使輪模式能直接延伸轉換成足模式,最直接的方式就是在原本的旋轉自由度之外,再增加一個自由度,這個自由度可調整關節連接點和輪心在垂直方向上的相對位置,並在機體傾斜時可發揮校正的功能。由於這兩個自由度互相垂直,並不會產生干擾的問題。如此一來就能藉由切換的方式來產生「輪」和「足」兩種移動模式。

複合機器人輪的狀態。

這兩臺機器人在設計架構上非常相似,皆採用彎曲的足部以及扁平的機體,機身內部皆設置慣性量測系統,內含加速規及陀螺儀,行進時六足機器人,六個足部以三足為一組,分成兩組交替行走,在機構的控制上非常簡單,每一隻足由一顆馬達提供一個由後向前翻轉的自由度,利用最少的馬達數量來控制機器人。而在輪足機器人方面,則採用一隻足兩顆馬達,用意在於提高足部自由度。另外由於四足平衡不易,在崎嶇地時可採用三足不動一足動的方式前進,以保持機身平衡,除輪移動模式外,輪足機器人其餘行走時皆採由後往前翻轉的自由度。

【使用的軟體以及硬體】

仿生機器人實驗室的六足機器人所運用的硬體系統為Single board RIO,而輪足機器人則採用CombactRIO,兩者皆架構簡單、穩定、可長時間使用且可模組化,非常適合學術界進行各式原型機開發測試,因為大小、重量、效能以及學習時間均是重要的因素。

而機器人要能夠動作,只有硬體結構是不行的。在研發這兩臺仿生機器人時,除了運用CompactRIO及Single board RIO系統,在軟體上便使用圖形化介面的LabVIEW。

至於為什麼選擇使用LabVIEW而非C語言為撰寫程式語言的軟體,林老師表示:「在國外我們大多使用的C語言來寫程式,運用工業電腦的架構來將一塊塊不同功能的電路板互相堆疊,造出一臺機器人,由於國外的機器人通常是整合電機、資工、機械三方共同研發,程式部分可交由熟悉C語言的資工系學生來寫。使用C語言有利也有弊,缺點就是程式量過大,可能一個機器人程式碼會多達幾百萬行;但不可否認的,使用C語言可使CPU使用量較低,讓機器人做出更多的行為動作。」

LabVIEW和CompactRIO與Single board RIO皆有良好的整合性,讓使用者在系統整合上能節省下大量時間與精力。在林沛群老師的仿生機器人實驗室裡,所有學生幾乎都是機械工程背景,對他們而言,採用可快速建立原型、穩定、容易上手、具良好整合性的機電系統,為機器人開發的關鍵因素。

林老師也說道:「經過審慎的評估後,LabVIEW和CompactRIO與Single boardRIO恰好符合我們的需求。由於研究所學生兩年就換一批,而LabVIEW 圖形化的程式介面,可使學生快速的學會如何撰寫程式,也較容易理解先前開發者所撰寫的程式,方便學生們進行交接。」但說到底,機器人是具備高複雜度的系統,要成功開發一臺可適切運作的機器人,仍需要整合機械、電子、和資訊等不同領域,並投入大量的時間和精力,才能順利完成。

六足整體系統架構圖。

【未來目標】

這兩臺機器人在目前已經在重新組裝做更新,林老師透露,他希望六足的仿生機器人在未來可以跳躍並飛越兩個身長以上的距離。要做出這樣的行為,必須使機器人能夠瞬間出力,目前元件已經是使用在市面上可取得最合適的零件,但仍然無法做出期望達到的動作,因此還需要再想其他的方法來完成目標。

跳躍的步態比較特別,不像之前行走及翻越障礙物是從研究蟑螂所得來的,跳躍這部分林老師改為探討馬在跨欄時的步態,必須先將六隻足部經由數學軟體計算過後,再由電腦各自分開控制,與先前行走步態時分成兩組來控制有所不同。

而在輪足複合機器人部分,一個地形中可能同時含有崎嶇地與平地,於是當機器人遇到崎嶇地形時,就會切換為足移動模式,但遇到平地又想切換成省能的輪移動模式時,都必須停下來在原地進行長時間的切換,但如此一來耗費的時間自然就增加,而且原本流暢的移動就須強迫暫停。所以林老師希望「深入研究如何在移動的過程中進行輪足的變換」。期望未來可以像變型金剛一樣,一邊移動一邊變換形態,充分展現出大家對於未來機器人的期望及獨創性。

截至目前為止,林老師的實驗室主要研究機器人的運動方式,未來可能朝向探測機器人或機器人載具來研究。現在需要機器人去探測的是還未開發(或仍在開發中)的地方,因此需要讓機器人學會更多的步態去適應。「目前臺灣的生物學者大部分都是研究生物的繁衍,較少研究步態」,林老師希望未來能跟動物學者一起整合進來參與這樣開發研究。

 

文章原文刊載於《ROBOCON》國際中文版 2013/3月號

科學怎麼搞:關於蟑螂的二三事

$
0
0

時至夏日,端午剛過,各種毒蛇猛獸都已經大舉出籠。雖然說生在現代社會的我們不需要擔心生活周遭會有毒蛇或野獸出沒(頂多只有毒蟲或四腳獸吧我想),但是潛伏的蚊蟲恐怕還是難以避免。而如果要說到七種令人討厭的蚊蟲之首(哪來的鬼排名),恐怕非蟑螂莫屬了。

想起那個燠熱的夏夜,在床上的你望向門外,卻不經意地看見牆角她那羞怯的身影,她那黑漆漆泛著油亮光澤的軀體,纖細而多毛的六條腿,靈動的觸角顫啊顫的,深邃的複眼像是可以看穿那一頭蓄勢待發的你的心思一般。在你的雙眼與她的複眼交會之時,萬籟俱寂,只有你自己的心跳聲和她那幾不可聞的倩兮輕笑(其實是口器摩擦發出的聲音)。

你嚥了嚥口水,口乾舌燥的,感覺身體裡有一股不斷膨脹的慾望,讓你高高舉起…手上的報紙或拖鞋。卻在這時候,她飛蛾撲火似地奔向了你,沿著牆邊輕巧地跨越了你的房門,無視於你的門板上永遠的女神王祖賢(什麼年代啊這),無視於你房裡地板上的黏滑,以及滿地的衛生紙。

誰叫你剛剛打翻滿地的洗碗精呢。

是的。蟑螂讓人又愛又怕(?),人人欲除之而後快。但除了拖鞋報紙殺蟲劑直接制裁之外,我們更希望蟑螂可以不要來拜訪。當然,有很多偏方號稱可以讓蟑螂不要來,例如有人說『只要用洗碗精添水抹在牆角門縫這些蟑螂固定出沒的路徑,蟑螂就不會來』。這個方法看起來好簡單好方便,但是有沒有效果呢?又效果是打哪來的呢?今天科學怎麼搞就先來搞搞這個小傳言吧。

通常,這種避忌物或是吸引物的實驗做起來都挺簡單的,大抵都是拿個Y形或是T形的裝置(一般稱做迷宮,雖然沒什麼好迷的),一邊放測試的物質,另一邊放中性的控制物,讓動物在其中放浪奔跑自由選擇。這樣的實驗以不同的動物個體重複個幾十次,統計後大概就可以得到結果了。

所以,做實驗前的第一件事情,應該是先蒐集蟑螂。因為居家常見的蟑螂有好幾種,所以要先學會分辨不同種類的蟑螂。當收集到某一特定種類、特定年齡(例如都是成蟲)的蟑螂三十隻或更多之後,讓他們各自分居住套房(以免互通聲息有串供之嫌),提供相同的飼料類型跟份量還有飲水,如果有必要,實驗之前還可以餓他個幾天,之後就可以準備做實驗了。

不過,『洗碗精添水抹在牆角門縫這些蟑螂固定出沒的路徑』這句話是有點模稜兩可,在我看來,假使這個偏方有效,至少也有兩個讓蟑螂不來拜訪的可能因素:

1. 因為蟑螂討厭洗碗精的氣味,所以一聞到洗碗精的氣味就會迴避。

2. 因為蟑螂碰到洗碗精就會不蘇湖,所以不想碰到或無法跨越洗碗精畫出的結界。

一般來說,科學實驗都會盡可能的簡化假說,藉由排除各種不必要的混雜因素和效應,以求能夠清楚明白的瞭解最單純的因果關係(奧卡母剃刀法則是也)。於是,既然這個『洗碗精添水』的偏方可以有兩種因果的可能,那麼為了探討不同的可能,也就是『洗碗精添水為何有效』的不同假說,當然也要有相對應的實驗的設置跟方式。

以第一個假說為例,我會這樣設計實驗:
根據實驗的蟑螂種類的大小,打造一個袖珍可愛的Y形迷宮,迷宮的路徑寬度大概是兩隻蟑螂並排,而每個分支的長度則是蟑螂一次爆衝也跑不完的距離(以免蟑螂暴衝就跑完了這樣)。之所以使用Y形迷宮,是因為這個假說的重點在『氣味』,所以為了要讓氣味能夠順利飄散,擁有和緩轉折的Y形迷宮應該比較適當。

Y形迷宮腳的末端有個小房間,可以讓實驗的蟑螂在裡面梳妝打點(?)準備上場。在迷宮的兩臂末端,分別放著沾有添水洗碗精的棉花球,以及只有沾水的棉花球(記得每次實驗時兩者的位置都要交換以避免偏誤)。又為了要讓氣味可以順利飄散到小房間這邊,在小房間的後面牆上得要裝上個抽風機,把小房間以及迷宮裡的空氣抽出去,讓氣流可以從迷宮兩臂末端一致的呼呼吹進來,在路口處交會後沿著迷宮路徑流到小房間裡的蟑螂嗅覺受器上。當然,為了要讓空氣順利被抽出去,小房間進到迷宮的入口得是紗門,而抽風機所在的牆面當然也裝上了紗窗,讓空氣順利流通之餘也避免實驗蟑螂被抽風機吸進去打成肉醬。為求謹慎,兩臂的空氣流動速度最好用個線香的煙測試一下,看看從兩臂而來的煙的流動速度是不是相同,也可以順便檢查一下煙會不會在路口攪和成一團分不清左右,如果兩臂的氣流在路口也可以涇渭分明那是最好,畢竟這樣蟑螂做起選擇應該是比較容易。

而這迷宮當然有個透明天花版,以免蟑螂脫稿演出跑出來跟大家說嗨。

於是實驗就這麼開始了。先把棉花在迷宮兩臂放好,抽風機打開,然後把一隻蟑螂放到小房間裡面。等到實驗的蟑螂梳妝打點完畢,小房間裡的迷宮入口一開,蟑螂就粉墨登場,進入迷宮走向未知的遠方。一旦蟑螂整個身體都進入迷宮某一臂,那就當作蟑螂已經做了選擇。就這麼一隻又一隻的重複實驗,大概就可以知道蟑螂是不是討厭洗碗精的氣味了。

不過,實驗哪有那麼簡單?蟑螂怎麼說也是江湖上響噹噹的一號人物,哪可能乖乖的開了房門就上場進迷宮做選擇?可以想到的困擾恐怕是蟑螂擺譜耍大牌不想出小房間、就算出了小房間也不想往前走、就算往前走也不想走到底而是繞來繞去、或者是不好好走路老是用暴衝的結果就算碰到棉花也很難說是不是真的做了選擇等等。

那到底該怎麼辦呢?這下子,恐怕不得不提供一些利誘了。

比較簡單的方法,是利用明暗的變化引誘蟑螂移動。大家都知道蟑螂畏光喜歡暗處,所以可以在蟑螂還待在小房間的時候讓小房間跟迷宮一樣稍暗,以和緩蟑螂上場前的情緒。到真要上場的時候,就讓小房間變亮但迷宮變得更暗,而兩臂深處則是全黑的地方。這樣蟑螂應該就會離開小房間往兩臂深處走去,然後就看洗碗精的氣味會不會影響蟑螂的決定了。

另一個稍微複雜一點的方法,則是在實驗之前剝奪蟑螂的飲水,讓蟑螂處於乾渴的狀態。於是當迷宮的入口一開,蟑螂應該就會向迷宮深處飛奔而去尋找水分或食物。蟑螂很可能聞得到從沾水棉花而來的水氣,於是就會往迷宮的那一頭移動,而洗碗精的氣味則是左右蟑螂的唯一因素。當然,如果要在實驗前剝奪蟑螂的食物,然後在兩臂末端除了沾水棉花球之外還提供引誘的食物也是可以。只是萬一食物選擇不當,找了一個超有吸引力的食物,恐怕洗碗精氣味的避忌效果就會打折扣了。

只不過呢,這個實驗的假說有個不小的問題,那就是『洗碗精的氣味』是指哪個部分。大家都知道,市面上的洗碗精有各種各樣的合成氣味,從檸檬香松木香椰子香橘子香還是自然花香甚至連無香氣的也有。如果說蟑螂是討厭洗碗精的氣味,那到底是哪一種合成氣味的呢?如果是某種特定的氣味,那是不是用錯了品牌或氣味就沒效了?而如果這裡的氣味是指洗碗精本身的氣味(如果真有的話),那會不會使用無香氣的洗碗精(例如沙拉脫?)才能夠真的顯現功效,其他有調味的洗碗精功效反而就打折了?

好吧,第一個假說就講到這裡。如果實驗結果是蟑螂多半往只沾清水的棉花球那一臂走去,那麼洗碗精的氣味(先不管是合成的香氣還是洗碗精本身的氣味)顯然就足以叫蟑螂退避三舍。但是如果蟑螂兩邊都會進去溜達,那大概就不是洗碗精的氣味能夠擋住蟑螂了。那有沒有可能是蟑螂不喜歡或是不敢接觸洗碗精呢?這時候就要根據第二個假說進行實驗,但這又該怎麼實驗呢?

既然第二個假說的重點在『接觸』,那麼用上述的Y形迷宮來做實驗也是可以,記得把小房間後的抽風機關掉以節能減碳就是。實驗設計上可以照樣使用光線變化引誘蟑螂移動,只不過這次改把洗碗精抹在迷宮一臂靠近分岔路口處,另外一臂則是抹清水做對照(而且記得每次實驗都要換邊以免出現偏誤),記得不要只抹個窄窄半公分薄薄一層,我至少會抹個蟑螂體長那麼寬。所以依樣畫葫蘆,把洗碗精跟清水抹在兩臂靠近路口處,把蟑螂放進小房間,等他準備好了以後打開迷宮入口並且調整明暗,引誘蟑螂往黑暗的兩臂末端移動,然後就看抹在路口的洗碗精會不會阻擋蟑螂的腳步了。如果想要用斷水禁食的然後提供飲食來誘引蟑螂也是可以,但一樣會面臨食物選擇的問題就是。

好,這樣子做了幾十次的實驗,要是大多數的蟑螂都往抹清水的那一臂移動,那就表示蟑螂真的不喜歡或是不能碰到抹在地面上的洗碗精。但要是大半的蟑螂都能若無其事的走過抹了洗碗精的地方還嘻皮笑臉,那麼洗碗精顯然也就沒有效果了。

回到那個燠熱的夏夜。

她進了你的房門,站在剛打翻洗碗精的黏滑地板和滿地的衛生紙之間。一陣風吹來,她身後的房門輕輕關起,門上的王祖賢似笑非校的看著你。

突然,順著那一陣風,站在衛生紙之間的她張開了雙臂(外加另外四條腿),向你倏忽靠近。在你瞪大的雙眼中,她的身影越來越大,越來越大,越來越大,你的耳裡盡是嘻嘻聲響。是她的笑聲嗎?

是拍翅聲。

馬的這蟑螂飛起來了啊我的媽*#&7#^+{P))}$^#*

嗯,在文章結束之前,我們可以稍微聊一下另一個傳言:會飛的蟑螂都是母的(或甚至是懷孕的)。這個傳言的根據為何,我們實在不得而知。但是要想要做個實驗確認一下倒是不難。

如果這傳言裡的『會飛』指的是『偏好以飛行為移動方式』,那麼簡單一點的方法是晚上到收攤後的傳統市場點燈吸引蟑螂過來,然後把每隻爬來或飛來的蟑螂都抓下來確認性別。既然這傳言說會飛的蟑螂『都是』母的或是懷孕的,那其實只要找到一隻飛過來的公蟑螂就可以收工了。不過,如果傳言的意思是「『大多是』母的」,那就得將爬來的蟑螂和飛來的蟑螂的性別比例對照一下,也就可以知道是不是『會飛』的蟑螂多半是母的。認真一點的話,還可以多點幾個晚上的燈,多跑幾個傳統市場,並且統計飛來的蟑螂的性別比例是否在各處都相同。當然,這個傳言裡的『會飛』也可能是指『有飛行能力』或是『飛行能力比較好』,那麼這實驗要做其實就更簡單了。一樣就是抓一堆公母各半的蟑螂回來,然後製造個只有飛行才能解決的障礙(例如高低落差),接著讓每隻公母蟑螂分別上場表現,看看是不是只有母蟑螂才飛得起來,或者是母蟑螂對飛行跨越障礙表現得駕輕就熟,這樣大概也就可以證實這個傳言的真偽了。

但是老實說,看到啪啪拍翅、張牙舞爪的飛行蟑螂往自己靠近,要忍住手起鞋落的衝動,還真是困難啊……

殘酷的蟑螂殺手:扁頭穴蜂-《寄生蟲圖鑑》

$
0
0

(泛科學)寄生蟲-扁頭穴蜂-2

扁頭穴蜂(Ampulex compressa

  • 分類:昆蟲類
  • 體長:20 mm
  • 宿主:蟑螂
  • 分布:熱帶地區

橢圓形軀幹映著黑色光澤,爬行時發出嘰擦嘰擦聲的腳,纖細又動個不停的長觸鬚,跑得飛快,偶爾飛一飛。這隻讓我們引起生理性嫌惡的昆蟲,便是蟑螂。多數的蟑螂住在森林中,但舉凡有人生活的環境都有其蹤跡。其環境適應力,可用「即使整個地球上的人類都滅絕了,蟑螂也絕不會滅絕」這句話來形容。

但,連這樣頑強的蟑螂也有天敵,那就是扁頭穴蜂[又稱翡翠蟑螂穴蜂(emerald cockroach wasp)]。其犀利的外骨骼透著青綠色的金屬光澤,這種小型蜂廣泛地分布在熱帶區域。這種蜂將活生生的蟑螂當作幼蟲的飼料而進行繁殖,其手段可說是殘忍至極。

扁頭穴蜂的雌蜂會在蟑螂身上刺兩針。首先會在大面積的胸部神經節部分刺第一針,使蟑螂停止行動。一旦動作停止,就會對頭部的腦進行第二次精確的刺擊。頭部被刺擊的蟑螂會放棄逃竄,且開始有四肢攤張現象。此乃因流入腦內的毒素,有麻痺反射性逃離的效果。當蟑螂變老實之後,蜂就會用顎將蟑螂的兩只觸角削短,這動作究竟是為了要從斷掉的觸角吸啜體液,以便補充於格鬥中消耗的體力;還是為了要調整注入蟑螂體內的毒液量,以維持其生死參半的狀態,到目前都還不清楚。

(泛科學)寄生蟲-扁頭穴蜂-4

在此之後,穴蜂會牽著蟑螂的觸角將其帶回巢穴內。封鎖反射性逃避的原因,是要讓體型較大的蟑螂維持足可靠自己步行的能力。蟑螂乖乖地被牽著走向穴蜂巢穴後,其身體表面就會被產下的卵附著。穴蜂為了不讓其他動物將蟑螂吃掉,會將巢穴入口用石頭塞起來,並就此飛去。

從卵孵化出來的幼蟲,會將蟑螂的腹部咬破後入侵其體內,在那兒一邊享用內臟一邊成長。不久在蟑螂體內化為蛹的幼蟲,於破蛹後就會從巢穴飛出去,留下身體被吃乾抹淨,徒留外骨骼的蟑螂屍體。一邊活著一邊內臟被咬去的蟑螂,會不會很痛苦呢?不是當事者的我們很難知道。像這樣作為宿主的蟑螂被扁頭泥蜂寄生後必然死亡的情形,通稱為捕食性寄生。

蟑螂的生態或外貌都被我們打從心底討厭。不過,若看到經受扁頭泥蜂這種手段對待的蟑螂,或許不禁會心生同情。從明天開始,多少以溫柔些的目光看看牠們吧。

 

摘自《寄生蟲圖鑑》,臉譜出版。

延伸觀看:

2015台灣國際科展 民俗祕方、太空氣候、蟑螂觸角皆題材 

$
0
0

文/劉珈均、蔡佩容、簡韻真

台灣國際科展自2002年起舉辦,像個科學競技場,各國好手在此交流、過招,選手的競技選擇繁多,有數學、化學、物理與天文學、動物學、微生物學、醫學與健康科學、行為與社會科學等13科,看見這些只有15到18歲左右的國高中生,是如此努力地「應用所學增進人類福祉」,若你也(跟採編們一樣)抱憾自己高中時代被考卷淹沒,一起來看看上個月的科展有哪些中學生驚人研究,逛逛今年來自20國家、展出150件作品的有趣攤位吧!

青少年科學家得主

各科獲獎學生有機會被選派繼續參與美國、荷蘭等國際科展,大會評審並從13科的一等獎選拔出三件專題,成為科展最高榮譽「青少年科學獎」,今年由建中高一生陳韋同、台中一中高二生李嘉峻、來自美國的華裔高中生張杰西(Jesse Zhang)共同獲得這最大獎。

IMG_9015

由左至右分別為陳韋同、李嘉峻、張杰西。圖/劉珈均攝。

陳韋同已不是第一次進入國際科展複賽了,此次他設計「單點定位系統應用於無人飛行器控制系統」,厲害的地方在於,只要單一參考點,即可即時而精準的定位!目前常用的定位系統仍稍有不便,如GPS定位需要三四顆衛星,且無法用於室內追蹤;一般室內定位用的RSSI技術(Received Signal Strength Indicator)亦需要至少三個定位點,且訊號易受物體干擾或牆壁反射,常得多一道演算法抵消;無人飛行器常以相機定位,易有死角,也有妨害隱私疑慮。陳韋同讓定位點減少的方法是利用兩個旋轉速率不同的磁鐵產生磁場變化,只要測磁場的相位差,再配合分頻多工(Frequency Division Multiplexing)的數位訊號處理,就可得知物體在三度空間中的位置與角度,相當方便用於室內定位。年紀輕輕的他已在申請專利,除了應用於無人飛行器,也可延伸用在行動穿戴裝置、照護機器人甚至送餐機器人的室內定位控制,讓機器人更完美地執行任務。

Ocean_currents_from_GOCE

根據GOCE衛星資料繪成的地球洋流影像。photo credit:ESA/CNES/CLS

太空也要有天氣預報!大氣層最上層的熱氣層常受太陽風影響,讓空氣分子的密度產生變化,這也會影響到在這個高度巡弋的衛星。來自美國科羅拉多州的張杰西發現,除了太陽風之外,月球重力場也對大氣層上層的「太空天氣」影響甚鉅。他分析歐洲太空總署2009至2013年的的GOCE海洋環流探測衛星資料(Gravity field and steady-state Ocean Circulation Explorer, GOCE),由該衛星提供的地球磁場、地表冰層厚度及洋流等數據,計算出不受月潮振盪和地磁影響的結果。發現月球的重力也會影響增溫層的氣象,如同影響地球的潮汐一般,且影響力可以達到太陽風的 50 %。這個月潮信號(lunar tidal signature)的動態分布與氣層的相對密度及帶狀氣流(zonal wind)都有季節-緯度(seasonal-latitudinal)上的關係。

李嘉峻喜歡數學,在看書過程中看到有趣的題目,他以六個環狀數字為雛形,分析相間兩數字相減之後的絕對值,在這些環狀排列的條件下,探討其守衡狀態及其全數歸零的研究。李嘉峻說,不同於一般多以數論角度去解釋數列的性質,這專題提供另一個角度討論盧卡斯數列與梅森數列;就實際應用,守衡狀態中的同餘性質或許可用於通訊傳遞與密碼學的加密資料,不過這是否可行還要進一步探究。

颱風、鄉野傳說、攝影機腳架──生活即科學

每個家庭可能都有些祖傳秘方,從小立志當醫生的加拿大高中生艾蜜莉˙歐萊里(Emily O’Reilly)也不例外,她的科展作品靈感來自她克羅埃西亞爺爺的「民俗保健食品」──杏子(apricot)。幽門螺旋桿菌會引起胃黏膜慢性發炎,進而導致胃及十二指腸潰瘍,甚至胃癌。在她爺爺的家鄉,相傳杏子可以治療胃癌,歐萊里歷時一年作這實驗專題,她移去杏仁中的氰化物成份,以確定幽門螺旋桿菌不是被氰化物殺死,再將杏子萃取物加進幽門螺旋桿菌的培養皿,發現杏子萃取物的確能產生生長抑制圈。歐萊里的爺爺已過世,歐萊里以此專題紀念爺爺,她也期盼未來能進一步研究杏子對抗胃癌的功效及應用。

IMG_9000

加拿大高中生艾蜜莉˙歐萊里探討爺爺家鄉的「民俗保健食品」杏子是否真有抑制胃病的效用,以此專題紀念爺爺。圖/劉珈均攝。

人人喊打的外來入侵種「小花蔓澤蘭」嚴重影響台灣本土生態系。但是曉明女中的許芷瑄利用移植腫瘤到裸鼠身上,發現小花蔓澤蘭的葉和根莖萃取物有清除自由基的能力,以及保護紅血球不受自由基誘發溶血反應,研究也發現它可以抑制血癌細胞生長。換句話說,小花蔓澤蘭可能具有抗氧化及抗血癌的功效!若未來成功利用它開發預防自由基疾病及抗癌的保健食品,也許就能促使大家踴躍除去小花蔓澤蘭,讓台灣生態系鬆一口氣,還另外賦予了「害草」重大生存意義(天生我材必有用,突然有點勵志啊)。

每次颱風來襲,大家除了關心有沒有放假之外,也都會緊盯颱風轉來轉去到底會從哪裡登陸,來自美國的吳威廉(William Wu)也希望能找到預測墨西哥灣颶風登陸地點的方式。他分析超過八十筆颶風登陸的歷史資料後,發現颶風登陸地點與路徑的相關性。他將會指向登陸地點的颶風路徑的切線位置連起來,建立出三條紐帶,當颶風經過時,可以大致估計其前往的登陸地點,他說這種方法的平均預測誤差比目前美國國家颶風中心模型的預測誤差少了 50 %。

天文學專題在科展屬鳳毛麟角,今年北一女學生柯芷蓉與江郁儀從選修課的作業延伸發想專題,從高一斷斷續續作到高三,探討紅移與星系顏色的關係,此專題拿下物理與天文學科別首獎。天文學家用望遠鏡擷取遙遠星系的資料,而宇宙正在加速膨脹,導致星系的顏色會往光譜波長較長的紅光方向移動,此為「紅移」,天體距離愈遠,遠離速度愈快,紅移值愈高,紅移值可用於計算地球與天體的距離。柯芷蓉說,他們看到一篇研究(Strateva et al. 2001),該研究使用史隆巡天計畫(SDSS)釋出的數據推想,但當時SDSS尚未有紅移資料,因此該學者用星系的亮度推論紅移,設想愈暗的星系,離地球愈遠,紅移值也愈高,偏紅星系的紅移值高會偏紅,但偏藍的星系紅移值愈高則偏藍。「這感覺跟我們課堂聽到的天文知識相衝突。」他們決定深入探究。柯芷蓉說,SDSS後期的資料有紅移值,他們分析SDSS第7至12版本的57萬多筆資料,加入實際觀測的紅移數據,重新探討紅移值與星系顏色、亮度的關係,發現紅移與顏色並無絕對的線性對應關係,不能從亮度推論紅移,且偏藍星系紅移值高一樣偏紅。他們修正了原本缺乏資訊造成的誤差,讓星系資訊更精確。

IMG_9012

瑞士高中生埃利亞斯˙漢普的多軸手持腳架在現場吸引大批人潮。圖/劉珈均攝。

現場非常受歡迎的瑞士高中生埃利亞斯˙漢普(Elias Hampp)設計了多軸攝影機手持腳架,不論各種手持姿勢,腳架縱軸重心皆可巧妙的維持不變,其多軸關節緩衝手持給予的外力,讓影像維持平穩、不晃動,使用者也可調整螺絲位置,分配力矩配重。這腳架加上一台GoPro,簡直無往不利!只可惜腳架重量略沉了一點,小編熱烈期待以後是否有更輕巧的作品上市(若太輕巧,手持又容易晃動影像了,得抓到平衡點)。

國際科展有蟑螂入侵!

蜚蠊目 姬蜚蠊科 德國姬蠊 Blattella germanica  94昆蟲營 惠蓀林場

圖為德國姬蠊。photo credit: https://flic.kr/p/4Z7S7。

中山女高的生物老師蔡任圃有個綽號「蟑螂艦長」,他期望教育不只傳遞知識,更要引燃熱情,總是不斷鼓勵學生去闖。林沂萱、陳永文所做的《螂吞虎嚥》利用影像分析及電位記錄,探討斐蠊前腸的消化機制,結果發現牠們可以敏感偵測人體無法辨識的低揮發性物質,也會對可能影響酸鹼與滲透壓恆定的物質呈現趨避反應,未來也許可以利用這些趨避性來調配蟑螂藥。

另一組的姚乃筠、毛靖雯研究非真社會性昆蟲的蜚蠊,是否像黃蜂一樣,具有警告費洛蒙(alarm pheromone),能提醒其他個體逃亡或攻擊。結果發現自美洲蟑螂 (Periplaneta americana )分泌萃取的警告物質,具種內甚至是種間驅散效果,顯示其可能不為單一物種專屬的費洛蒙;此外,在不同性別與年齡間有不同的反應,推測分別有行為演化上的意義。未來也許可以利用以上兩組發現的趨避性甚至警戒物質,調配對環境傷害更小的蟑螂藥。

蟑螂總是惱人的爬上爬下,迅速躲開拖鞋攻勢,李欣玫與陳韻安探討蟑螂是不是能知道重力方向在哪裡。依據文獻資料,多數昆蟲用本體感受器如肌肉、關節、毛板等偵測身體各處的壓力,整合壓力資訊後才能推測出重力方向,這種方式需要較長的時間,若壓力資訊錯誤或身體各處壓力均等(例如被埋在沙子中),就會導致昆蟲判斷錯誤。蟑螂在地面、天花板、牆面等處爬行的過程中,重力方向不時變換,而蟑螂爬行速度又快,因此,李欣玫與陳韻安推論蟑螂身上有直接偵測重力的器官,讓牠可以迅速正確地判斷重力方向並作出反射以避免摔落,他們稱該器官為重力感受器(gravity receptor)。他們研究發現:蟑螂的觸角以及位於腹部末端的尾毛就是重力感受器;觸角需要兩側都存在才保有完整功能,尾毛只需單側即可;觸角的擺動可能是感測到重力方向改變後,產生的反射;蟑螂的尾毛有一種像小石頭的構造懸掛表面,與人類的耳石(同是與平衡有關的構造)十分相似,這種小石頭或許跟蟑螂感測重力有關,若之後有更多研究,找出相關的平衡機制,也許未來可以利用蟑螂來研究與人類前庭系統(包括耳石)相關的疾病。困擾很多人的暈眩症就是跟耳石有關,但耳石在耳朵裡,又小又不好找,若能利用長在蟑螂尾毛表面的小石頭研究應該會方便許多。

社科學生站出來 科展不由理工組「壟斷」

在這充滿自然組與理工氣息的場合,「行為與社會科學類」的攤位顯得獨樹一幟,國外科展多有此項目,台灣國際科展則是近三年才新增此科別。

北一女學生黃以寧與孟玉婕研究身障者與消費行為,過去研究顯示,不論是求職或消費,身障者常受到不平等待遇,黃以寧與孟玉婕換個角度想,若讓身障者轉換角色,位於生產者端,所受待遇如何?她們到夜市擺攤,請同一人分飾正常人與坐輪椅的身障者兩個角色,賣飲料六天,她們觀察記錄輔以問卷,分析來往一百多位顧客的行為。她們調查發現,年齡較高或是平日不常購買飲料的消費者,向身障業者購買飲料的比例及可能性較高(雖然購買行為受飲料吸引程度影響極高),這些族群的消費行為可能更受同理心驅策,其他變項如性別則較不顯著。她們希望藉由這些研究未來可以幫助身障業者,在打動消費者的時候做到更有效的行銷。

南非高中生蕾雅˙法蘭區(Leia French)自己設計遊戲「Gaming for Social Change」,在遊戲關卡中埋入社會議題暗示,希望以遊戲喚起對南非社會議題的關注,例如缺水問題、基礎建設不足、煤油燈造成的火災。蕾雅以問卷分析90位玩家玩遊戲前後的價值觀改變,發現這類遊戲能較輕鬆而更貼近生活的方式,喚起大家對社會議題的重視。

有趣的作品太多實在寫不下,對其他專題作品有興趣的讀者可以上科教館的網站看更多歷年的得獎作品。

 

右撇子蟑螂

$
0
0

當我們輕開起廚房的燈光看到一隻蟑螂倉皇逃向陰暗角落時,我們會感到一股嫌惡的反感。但一個新的研究發現,大部分的人類與這種卡夫卡小說裡的恐怖生物共同享有一個基本的特徵,那就是:慣用手/方向,而這並不是因為人類和蟑螂親緣關係太近的原因。

圖片來自ScienceShot

研究學者發現,將蟑螂放入Y型管內並使用香草或乙醇等味道來引誘昆蟲冒險經過Y型管分叉點時,研究學者同時記錄下昆蟲選擇的方向。蟑螂利用觸鬚在叉路優先選擇向右邊的次數佔了57 %。即使在科學者切斷了其中一根蟑螂用來感受觸覺和嗅覺的感知觸鬚後,這種偏右側的喜好仍然存在。這項發現會增加越來越多的證據說明:即使最微小的腦部仍然有方向偏好性,並會發表在即將出版的期刊 Journal of Insect Behavior 上。這也可以幫助生物工程方面想用來控制或搜索蟑螂,以及達到防治病蟲害。

資料來源:ScienceShot: Cockroaches Prefer Right Turns

The post 右撇子蟑螂 appeared first on PanSci 泛科學.


蟑螂腳的神經律動!The Cockroach Beatbox

$
0
0


腦科學的研究進步神速,但是神經科學的實驗總是讓人覺得離生活遙遠,好像只有非常貴重的儀器還有非常複雜的樣品處理才有可能在實驗室量測到神經細胞的反應。這個演講做了一個很好好的展示,怎麼利用日常生活都看到的的生物,蟑螂,還有不難架設的裝置,來進行真正的神經科學研究。

首先抓起蟑螂(@_@)丟到冰水裡,蟑螂就會乖乖的不動休息了,然後剪下蟑螂的一隻腳。蟑螂的腳毛上有神經細細胞負責傳遞震動給蟑螂的腦,所以只要把腳用兩個大頭針固定住,接上訊號放大器,就可以看到蟑螂的腳是怎麼把神經訊號傳送出來。在很多噪聲中,偶爾會有比較大的神經訊號spike,因為腳毛細細胞是偵測震動,所以只要吹吹風就可以改變輸出spike的數目,蟑螂就是用spike的數目來偵測環境震動的強度。

當然蟑螂的腳也會在收到腦的電訊號時運動來逃跑,這時候可以把隨身聽的音源線接給蟑螂腳,就可以看到蟑螂腳隨著音樂抖動起舞。 當然這樣的實驗(如果想做的跟展示的人一樣) 還是需要一點點電子基礎來做簡單訊號放大跟擷取,不過其實也不真的困難,或許有心的教師或是同學可以在課堂上做出類似的展示也說不定 !

The post 蟑螂腳的神經律動!The Cockroach Beatbox appeared first on PanSci 泛科學.

搜救英雄 生化電子蟑螂

$
0
0

北卡羅萊納州立大學(North Carolina State University)iBionics實驗室的科學家開發1種技術,能準確控制蟑螂爬行的方向,期待未來能應用到搜救任務中。

電子及電腦工程學系的助理教授巴扎克和博士候選人拉提夫,設計了1個小型的「背包」,掛在馬達加斯加蟑螂(Gromphadorhina portentosa)的背後。「背包」包含一小塊電路板、無線接收器、電極還有電池,能產生電流,控制蟑螂往左或右。

「其實就跟騎馬一樣,蟑螂在正常情況下爬行,然後我們送電流刺激它的觸角,讓它以為遇到障礙。」巴扎克在接受《美國科學人》(Scientific American)採訪時表示,「因為蟑螂靠觸角來感測障礙,當觸角『撞到』阻礙時,就會往另一個方向移動。」

這項發明在第44屆IEEE國際年會中發表,因為「生化電子蟑螂」能在險惡的地形上巡邏,很適合搜尋災區的受難者,對救災任務將很有幫助。

震災中災民被困在崩塌的建築瓦礫堆中,搜救蟑螂體積小、能感測障礙物,或許能夠幫助搜救。

除了電子蟑螂以外,iBionics實驗室也針對電子蛾進行相同研究,令其可擔任飛行任務。在此之前,2010年柏克萊大學的工程師馬哈.別茲(Michel M. Maharbiz)和早稲田大學的佐藤(Hirotaka Sato)亦在拖瓜塔花金龜(Mecynorrhina torquata)上裝置電子晶片,控制它飛行的方向。

昆蟲的神經系統及行為相對脊椎動物簡單,且電子零件日漸微小,未來可以有更多「蟲機介面」整合的例子及應用,或許各式昆蟲賽博格(Insect Cyborgs) 將在下一場大地震時派上用場。

(本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!)

資料來源:

The post 搜救英雄 生化電子蟑螂 appeared first on PanSci 泛科學.

臺灣大學BioRoLa實驗室六足仿生機器人現身!

$
0
0

採訪/謝瑩霖‧協助取材/美商國家儀器股份有限公司

由臺灣大學BioRoLa實驗室製作的輪足複合機器人(Quattroped)與六足仿生機器人(miniRHex),以獨特的運動方式來適應各種地形,提供了不同於以往的觀點,讓大家對機器人有更多樣化的想像。本篇將為各位更詳細的介紹這兩臺頗具特色的機器人。

(左圖為臺大機械所林沛群老師。)

【以「仿生機器人」為主軸,取材自生物步態】

由臺灣大學機械所林沛群老師所帶領的仿生機器人實驗室(BioRoLa),主要研究領域是以「仿生機器人」為主軸,研究機器人足部運動系統。其中最主要的兩臺機器人為六足仿生機器人(miniRHex)與輪足複合機器人(Quattroped),皆是以特殊的足部結構為特色的機器人。

林沛群老師說:「輪跟足之間有很大的差異,人在發展環境的過程中,若要使用輪必定要先將路剷平,所以輪是人創造出來的;但如果是生物體在自然且未開發的環境裡,經過時間的証實,演化出來最好用的還是足,這也是為什麼生物體幾乎是使用足來行走。而在日本機器人發展主要以人形為主,反倒是在美國機器人研究主要是輪型,而我是將研究的重點放在足部的運動。」

而輪足複合機器人(Quattroped)與六足仿生機器人(miniRHex)最主要的取材對象是「生物的步態」,林沛群老師根據生物在自然界中行走的模式與方法,製作出「仿生」機器人。以下將分別為大家介紹這兩臺機器人的獨特之處。

六足仿生機器人(miniRHex)

六足仿生機器人藉由其多種步態來行走,可行走於崎嶇不平的路面、跨越障礙、爬上樓梯及斜坡。這臺六足機器人的行走模式是參考在日常生活中,人們總是對敬而遠之的生物──蟑螂。林老師說:「我在美國時,與一位柏克萊UC-Berkeley專門研究蟑螂運動的教授Prof. Robert Full討論時發現,蟑螂看起來簡單,但實際上卻有很大的學問。牠們只須透過足部簡單的交互運動,就能前進以及越過障礙,這其中必定有值得我們學習的部分。」

目前機器人的步態包含前進及後退,在速度上又可分為一般行走、慢跑及高速奔跑,但更特別的是不需足部翻轉的蹬跳前進。而攀爬方面已可克服斜坡及樓梯,另外較為有趣的步態是利用機腹平坦部分來滑下樓梯,以及兩組足部反向運動的原地旋轉和足部瞬間出力的跳躍,現今林老師仍在努力於步態的開發,以提升機器人對於各種環境的適應性。

六足仿生機器人工程三視圖。


▲六足仿生機器人。

輪足複合機器人(Quattroped)

林沛群老師實驗室的另一臺機器人──輪足複合機器人(Quattroped)是一臺不論在室內或室外都可自由運行的機器人,這臺複合式機器人的輪和足使用同一組動力來源,藉由「轉換機構」可將輪足切換成足部或是輪型兩種不同的移動模式。相對於前面提到的六足仿生機器人,可輪足變換的好處在於,平面時以輪的方式來移動,較為省力也可提升速度。

但由於輪、足兩者運動模式所需的軸心不同,於是必須透過「轉換機構」來切換軸心點。以輪移動模式時,輪圈與地面相接觸的點則落在軸心點的正下方固定距離處;但在足部移動模式中,由於足部運動一般為週期性的向前擺動,軸心點與地面相接觸點並未依循特定的規則,所以在足部的週期運動中,足部對地面的相對位置會呈現頻繁但不固定的變化。

基於上述的原因,林老師與學生們設計了一個新式的轉換機構,此機構可以直接控制輪圈的外形以及輪心與關節的相對位置。由於輪圈本身是二維平面物體,為使輪模式能直接延伸轉換成足模式,最直接的方式就是在原本的旋轉自由度之外,再增加一個自由度,這個自由度可調整關節連接點和輪心在垂直方向上的相對位置,並在機體傾斜時可發揮校正的功能。由於這兩個自由度互相垂直,並不會產生干擾的問題。如此一來就能藉由切換的方式來產生「輪」和「足」兩種移動模式。

複合機器人輪的狀態。

這兩臺機器人在設計架構上非常相似,皆採用彎曲的足部以及扁平的機體,機身內部皆設置慣性量測系統,內含加速規及陀螺儀,行進時六足機器人,六個足部以三足為一組,分成兩組交替行走,在機構的控制上非常簡單,每一隻足由一顆馬達提供一個由後向前翻轉的自由度,利用最少的馬達數量來控制機器人。而在輪足機器人方面,則採用一隻足兩顆馬達,用意在於提高足部自由度。另外由於四足平衡不易,在崎嶇地時可採用三足不動一足動的方式前進,以保持機身平衡,除輪移動模式外,輪足機器人其餘行走時皆採由後往前翻轉的自由度。

【使用的軟體以及硬體】

仿生機器人實驗室的六足機器人所運用的硬體系統為Single board RIO,而輪足機器人則採用CombactRIO,兩者皆架構簡單、穩定、可長時間使用且可模組化,非常適合學術界進行各式原型機開發測試,因為大小、重量、效能以及學習時間均是重要的因素。

而機器人要能夠動作,只有硬體結構是不行的。在研發這兩臺仿生機器人時,除了運用CompactRIO及Single board RIO系統,在軟體上便使用圖形化介面的LabVIEW。

至於為什麼選擇使用LabVIEW而非C語言為撰寫程式語言的軟體,林老師表示:「在國外我們大多使用的C語言來寫程式,運用工業電腦的架構來將一塊塊不同功能的電路板互相堆疊,造出一臺機器人,由於國外的機器人通常是整合電機、資工、機械三方共同研發,程式部分可交由熟悉C語言的資工系學生來寫。使用C語言有利也有弊,缺點就是程式量過大,可能一個機器人程式碼會多達幾百萬行;但不可否認的,使用C語言可使CPU使用量較低,讓機器人做出更多的行為動作。」

LabVIEW和CompactRIO與Single board RIO皆有良好的整合性,讓使用者在系統整合上能節省下大量時間與精力。在林沛群老師的仿生機器人實驗室裡,所有學生幾乎都是機械工程背景,對他們而言,採用可快速建立原型、穩定、容易上手、具良好整合性的機電系統,為機器人開發的關鍵因素。

林老師也說道:「經過審慎的評估後,LabVIEW和CompactRIO與Single boardRIO恰好符合我們的需求。由於研究所學生兩年就換一批,而LabVIEW 圖形化的程式介面,可使學生快速的學會如何撰寫程式,也較容易理解先前開發者所撰寫的程式,方便學生們進行交接。」但說到底,機器人是具備高複雜度的系統,要成功開發一臺可適切運作的機器人,仍需要整合機械、電子、和資訊等不同領域,並投入大量的時間和精力,才能順利完成。

六足整體系統架構圖。

【未來目標】

這兩臺機器人在目前已經在重新組裝做更新,林老師透露,他希望六足的仿生機器人在未來可以跳躍並飛越兩個身長以上的距離。要做出這樣的行為,必須使機器人能夠瞬間出力,目前元件已經是使用在市面上可取得最合適的零件,但仍然無法做出期望達到的動作,因此還需要再想其他的方法來完成目標。

跳躍的步態比較特別,不像之前行走及翻越障礙物是從研究蟑螂所得來的,跳躍這部分林老師改為探討馬在跨欄時的步態,必須先將六隻足部經由數學軟體計算過後,再由電腦各自分開控制,與先前行走步態時分成兩組來控制有所不同。

而在輪足複合機器人部分,一個地形中可能同時含有崎嶇地與平地,於是當機器人遇到崎嶇地形時,就會切換為足移動模式,但遇到平地又想切換成省能的輪移動模式時,都必須停下來在原地進行長時間的切換,但如此一來耗費的時間自然就增加,而且原本流暢的移動就須強迫暫停。所以林老師希望「深入研究如何在移動的過程中進行輪足的變換」。期望未來可以像變型金剛一樣,一邊移動一邊變換形態,充分展現出大家對於未來機器人的期望及獨創性。

截至目前為止,林老師的實驗室主要研究機器人的運動方式,未來可能朝向探測機器人或機器人載具來研究。現在需要機器人去探測的是還未開發(或仍在開發中)的地方,因此需要讓機器人學會更多的步態去適應。「目前臺灣的生物學者大部分都是研究生物的繁衍,較少研究步態」,林老師希望未來能跟動物學者一起整合進來參與這樣開發研究。

 

文章原文刊載於《ROBOCON》國際中文版 2013/3月號

The post 臺灣大學BioRoLa實驗室六足仿生機器人現身! appeared first on PanSci 泛科學.

科學怎麼搞:關於蟑螂的二三事

$
0
0

時至夏日,端午剛過,各種毒蛇猛獸都已經大舉出籠。雖然說生在現代社會的我們不需要擔心生活周遭會有毒蛇或野獸出沒(頂多只有毒蟲或四腳獸吧我想),但是潛伏的蚊蟲恐怕還是難以避免。而如果要說到七種令人討厭的蚊蟲之首(哪來的鬼排名),恐怕非蟑螂莫屬了。

想起那個燠熱的夏夜,在床上的你望向門外,卻不經意地看見牆角她那羞怯的身影,她那黑漆漆泛著油亮光澤的軀體,纖細而多毛的六條腿,靈動的觸角顫啊顫的,深邃的複眼像是可以看穿那一頭蓄勢待發的你的心思一般。在你的雙眼與她的複眼交會之時,萬籟俱寂,只有你自己的心跳聲和她那幾不可聞的倩兮輕笑(其實是口器摩擦發出的聲音)。

你嚥了嚥口水,口乾舌燥的,感覺身體裡有一股不斷膨脹的慾望,讓你高高舉起…手上的報紙或拖鞋。卻在這時候,她飛蛾撲火似地奔向了你,沿著牆邊輕巧地跨越了你的房門,無視於你的門板上永遠的女神王祖賢(什麼年代啊這),無視於你房裡地板上的黏滑,以及滿地的衛生紙。

誰叫你剛剛打翻滿地的洗碗精呢。

是的。蟑螂讓人又愛又怕(?),人人欲除之而後快。但除了拖鞋報紙殺蟲劑直接制裁之外,我們更希望蟑螂可以不要來拜訪。當然,有很多偏方號稱可以讓蟑螂不要來,例如有人說『只要用洗碗精添水抹在牆角門縫這些蟑螂固定出沒的路徑,蟑螂就不會來』。這個方法看起來好簡單好方便,但是有沒有效果呢?又效果是打哪來的呢?今天科學怎麼搞就先來搞搞這個小傳言吧。

通常,這種避忌物或是吸引物的實驗做起來都挺簡單的,大抵都是拿個Y形或是T形的裝置(一般稱做迷宮,雖然沒什麼好迷的),一邊放測試的物質,另一邊放中性的控制物,讓動物在其中放浪奔跑自由選擇。這樣的實驗以不同的動物個體重複個幾十次,統計後大概就可以得到結果了。

所以,做實驗前的第一件事情,應該是先蒐集蟑螂。因為居家常見的蟑螂有好幾種,所以要先學會分辨不同種類的蟑螂。當收集到某一特定種類、特定年齡(例如都是成蟲)的蟑螂三十隻或更多之後,讓他們各自分居住套房(以免互通聲息有串供之嫌),提供相同的飼料類型跟份量還有飲水,如果有必要,實驗之前還可以餓他個幾天,之後就可以準備做實驗了。

不過,『洗碗精添水抹在牆角門縫這些蟑螂固定出沒的路徑』這句話是有點模稜兩可,在我看來,假使這個偏方有效,至少也有兩個讓蟑螂不來拜訪的可能因素:

1. 因為蟑螂討厭洗碗精的氣味,所以一聞到洗碗精的氣味就會迴避。

2. 因為蟑螂碰到洗碗精就會不蘇湖,所以不想碰到或無法跨越洗碗精畫出的結界。

一般來說,科學實驗都會盡可能的簡化假說,藉由排除各種不必要的混雜因素和效應,以求能夠清楚明白的瞭解最單純的因果關係(奧卡母剃刀法則是也)。於是,既然這個『洗碗精添水』的偏方可以有兩種因果的可能,那麼為了探討不同的可能,也就是『洗碗精添水為何有效』的不同假說,當然也要有相對應的實驗的設置跟方式。

以第一個假說為例,我會這樣設計實驗:
根據實驗的蟑螂種類的大小,打造一個袖珍可愛的Y形迷宮,迷宮的路徑寬度大概是兩隻蟑螂並排,而每個分支的長度則是蟑螂一次爆衝也跑不完的距離(以免蟑螂暴衝就跑完了這樣)。之所以使用Y形迷宮,是因為這個假說的重點在『氣味』,所以為了要讓氣味能夠順利飄散,擁有和緩轉折的Y形迷宮應該比較適當。

Y形迷宮腳的末端有個小房間,可以讓實驗的蟑螂在裡面梳妝打點(?)準備上場。在迷宮的兩臂末端,分別放著沾有添水洗碗精的棉花球,以及只有沾水的棉花球(記得每次實驗時兩者的位置都要交換以避免偏誤)。又為了要讓氣味可以順利飄散到小房間這邊,在小房間的後面牆上得要裝上個抽風機,把小房間以及迷宮裡的空氣抽出去,讓氣流可以從迷宮兩臂末端一致的呼呼吹進來,在路口處交會後沿著迷宮路徑流到小房間裡的蟑螂嗅覺受器上。當然,為了要讓空氣順利被抽出去,小房間進到迷宮的入口得是紗門,而抽風機所在的牆面當然也裝上了紗窗,讓空氣順利流通之餘也避免實驗蟑螂被抽風機吸進去打成肉醬。為求謹慎,兩臂的空氣流動速度最好用個線香的煙測試一下,看看從兩臂而來的煙的流動速度是不是相同,也可以順便檢查一下煙會不會在路口攪和成一團分不清左右,如果兩臂的氣流在路口也可以涇渭分明那是最好,畢竟這樣蟑螂做起選擇應該是比較容易。

而這迷宮當然有個透明天花版,以免蟑螂脫稿演出跑出來跟大家說嗨。

於是實驗就這麼開始了。先把棉花在迷宮兩臂放好,抽風機打開,然後把一隻蟑螂放到小房間裡面。等到實驗的蟑螂梳妝打點完畢,小房間裡的迷宮入口一開,蟑螂就粉墨登場,進入迷宮走向未知的遠方。一旦蟑螂整個身體都進入迷宮某一臂,那就當作蟑螂已經做了選擇。就這麼一隻又一隻的重複實驗,大概就可以知道蟑螂是不是討厭洗碗精的氣味了。

不過,實驗哪有那麼簡單?蟑螂怎麼說也是江湖上響噹噹的一號人物,哪可能乖乖的開了房門就上場進迷宮做選擇?可以想到的困擾恐怕是蟑螂擺譜耍大牌不想出小房間、就算出了小房間也不想往前走、就算往前走也不想走到底而是繞來繞去、或者是不好好走路老是用暴衝的結果就算碰到棉花也很難說是不是真的做了選擇等等。

那到底該怎麼辦呢?這下子,恐怕不得不提供一些利誘了。

比較簡單的方法,是利用明暗的變化引誘蟑螂移動。大家都知道蟑螂畏光喜歡暗處,所以可以在蟑螂還待在小房間的時候讓小房間跟迷宮一樣稍暗,以和緩蟑螂上場前的情緒。到真要上場的時候,就讓小房間變亮但迷宮變得更暗,而兩臂深處則是全黑的地方。這樣蟑螂應該就會離開小房間往兩臂深處走去,然後就看洗碗精的氣味會不會影響蟑螂的決定了。

另一個稍微複雜一點的方法,則是在實驗之前剝奪蟑螂的飲水,讓蟑螂處於乾渴的狀態。於是當迷宮的入口一開,蟑螂應該就會向迷宮深處飛奔而去尋找水分或食物。蟑螂很可能聞得到從沾水棉花而來的水氣,於是就會往迷宮的那一頭移動,而洗碗精的氣味則是左右蟑螂的唯一因素。當然,如果要在實驗前剝奪蟑螂的食物,然後在兩臂末端除了沾水棉花球之外還提供引誘的食物也是可以。只是萬一食物選擇不當,找了一個超有吸引力的食物,恐怕洗碗精氣味的避忌效果就會打折扣了。

只不過呢,這個實驗的假說有個不小的問題,那就是『洗碗精的氣味』是指哪個部分。大家都知道,市面上的洗碗精有各種各樣的合成氣味,從檸檬香松木香椰子香橘子香還是自然花香甚至連無香氣的也有。如果說蟑螂是討厭洗碗精的氣味,那到底是哪一種合成氣味的呢?如果是某種特定的氣味,那是不是用錯了品牌或氣味就沒效了?而如果這裡的氣味是指洗碗精本身的氣味(如果真有的話),那會不會使用無香氣的洗碗精(例如沙拉脫?)才能夠真的顯現功效,其他有調味的洗碗精功效反而就打折了?

好吧,第一個假說就講到這裡。如果實驗結果是蟑螂多半往只沾清水的棉花球那一臂走去,那麼洗碗精的氣味(先不管是合成的香氣還是洗碗精本身的氣味)顯然就足以叫蟑螂退避三舍。但是如果蟑螂兩邊都會進去溜達,那大概就不是洗碗精的氣味能夠擋住蟑螂了。那有沒有可能是蟑螂不喜歡或是不敢接觸洗碗精呢?這時候就要根據第二個假說進行實驗,但這又該怎麼實驗呢?

既然第二個假說的重點在『接觸』,那麼用上述的Y形迷宮來做實驗也是可以,記得把小房間後的抽風機關掉以節能減碳就是。實驗設計上可以照樣使用光線變化引誘蟑螂移動,只不過這次改把洗碗精抹在迷宮一臂靠近分岔路口處,另外一臂則是抹清水做對照(而且記得每次實驗都要換邊以免出現偏誤),記得不要只抹個窄窄半公分薄薄一層,我至少會抹個蟑螂體長那麼寬。所以依樣畫葫蘆,把洗碗精跟清水抹在兩臂靠近路口處,把蟑螂放進小房間,等他準備好了以後打開迷宮入口並且調整明暗,引誘蟑螂往黑暗的兩臂末端移動,然後就看抹在路口的洗碗精會不會阻擋蟑螂的腳步了。如果想要用斷水禁食的然後提供飲食來誘引蟑螂也是可以,但一樣會面臨食物選擇的問題就是。

好,這樣子做了幾十次的實驗,要是大多數的蟑螂都往抹清水的那一臂移動,那就表示蟑螂真的不喜歡或是不能碰到抹在地面上的洗碗精。但要是大半的蟑螂都能若無其事的走過抹了洗碗精的地方還嘻皮笑臉,那麼洗碗精顯然也就沒有效果了。

回到那個燠熱的夏夜。

她進了你的房門,站在剛打翻洗碗精的黏滑地板和滿地的衛生紙之間。一陣風吹來,她身後的房門輕輕關起,門上的王祖賢似笑非校的看著你。

突然,順著那一陣風,站在衛生紙之間的她張開了雙臂(外加另外四條腿),向你倏忽靠近。在你瞪大的雙眼中,她的身影越來越大,越來越大,越來越大,你的耳裡盡是嘻嘻聲響。是她的笑聲嗎?

是拍翅聲。

馬的這蟑螂飛起來了啊我的媽*#&7#^+{P))}$^#*

嗯,在文章結束之前,我們可以稍微聊一下另一個傳言:會飛的蟑螂都是母的(或甚至是懷孕的)。這個傳言的根據為何,我們實在不得而知。但是要想要做個實驗確認一下倒是不難。

如果這傳言裡的『會飛』指的是『偏好以飛行為移動方式』,那麼簡單一點的方法是晚上到收攤後的傳統市場點燈吸引蟑螂過來,然後把每隻爬來或飛來的蟑螂都抓下來確認性別。既然這傳言說會飛的蟑螂『都是』母的或是懷孕的,那其實只要找到一隻飛過來的公蟑螂就可以收工了。不過,如果傳言的意思是「『大多是』母的」,那就得將爬來的蟑螂和飛來的蟑螂的性別比例對照一下,也就可以知道是不是『會飛』的蟑螂多半是母的。認真一點的話,還可以多點幾個晚上的燈,多跑幾個傳統市場,並且統計飛來的蟑螂的性別比例是否在各處都相同。當然,這個傳言裡的『會飛』也可能是指『有飛行能力』或是『飛行能力比較好』,那麼這實驗要做其實就更簡單了。一樣就是抓一堆公母各半的蟑螂回來,然後製造個只有飛行才能解決的障礙(例如高低落差),接著讓每隻公母蟑螂分別上場表現,看看是不是只有母蟑螂才飛得起來,或者是母蟑螂對飛行跨越障礙表現得駕輕就熟,這樣大概也就可以證實這個傳言的真偽了。

但是老實說,看到啪啪拍翅、張牙舞爪的飛行蟑螂往自己靠近,要忍住手起鞋落的衝動,還真是困難啊……

The post 科學怎麼搞:關於蟑螂的二三事 appeared first on PanSci 泛科學.

殘酷的蟑螂殺手:扁頭穴蜂-《寄生蟲圖鑑》

$
0
0

(泛科學)寄生蟲-扁頭穴蜂-2

扁頭穴蜂(Ampulex compressa

  • 分類:昆蟲類
  • 體長:20 mm
  • 宿主:蟑螂
  • 分布:熱帶地區

橢圓形軀幹映著黑色光澤,爬行時發出嘰擦嘰擦聲的腳,纖細又動個不停的長觸鬚,跑得飛快,偶爾飛一飛。這隻讓我們引起生理性嫌惡的昆蟲,便是蟑螂。多數的蟑螂住在森林中,但舉凡有人生活的環境都有其蹤跡。其環境適應力,可用「即使整個地球上的人類都滅絕了,蟑螂也絕不會滅絕」這句話來形容。

但,連這樣頑強的蟑螂也有天敵,那就是扁頭穴蜂[又稱翡翠蟑螂穴蜂(emerald cockroach wasp)]。其犀利的外骨骼透著青綠色的金屬光澤,這種小型蜂廣泛地分布在熱帶區域。這種蜂將活生生的蟑螂當作幼蟲的飼料而進行繁殖,其手段可說是殘忍至極。

扁頭穴蜂的雌蜂會在蟑螂身上刺兩針。首先會在大面積的胸部神經節部分刺第一針,使蟑螂停止行動。一旦動作停止,就會對頭部的腦進行第二次精確的刺擊。頭部被刺擊的蟑螂會放棄逃竄,且開始有四肢攤張現象。此乃因流入腦內的毒素,有麻痺反射性逃離的效果。當蟑螂變老實之後,蜂就會用顎將蟑螂的兩只觸角削短,這動作究竟是為了要從斷掉的觸角吸啜體液,以便補充於格鬥中消耗的體力;還是為了要調整注入蟑螂體內的毒液量,以維持其生死參半的狀態,到目前都還不清楚。

(泛科學)寄生蟲-扁頭穴蜂-4

在此之後,穴蜂會牽著蟑螂的觸角將其帶回巢穴內。封鎖反射性逃避的原因,是要讓體型較大的蟑螂維持足可靠自己步行的能力。蟑螂乖乖地被牽著走向穴蜂巢穴後,其身體表面就會被產下的卵附著。穴蜂為了不讓其他動物將蟑螂吃掉,會將巢穴入口用石頭塞起來,並就此飛去。

從卵孵化出來的幼蟲,會將蟑螂的腹部咬破後入侵其體內,在那兒一邊享用內臟一邊成長。不久在蟑螂體內化為蛹的幼蟲,於破蛹後就會從巢穴飛出去,留下身體被吃乾抹淨,徒留外骨骼的蟑螂屍體。一邊活著一邊內臟被咬去的蟑螂,會不會很痛苦呢?不是當事者的我們很難知道。像這樣作為宿主的蟑螂被扁頭泥蜂寄生後必然死亡的情形,通稱為捕食性寄生。

蟑螂的生態或外貌都被我們打從心底討厭。不過,若看到經受扁頭泥蜂這種手段對待的蟑螂,或許不禁會心生同情。從明天開始,多少以溫柔些的目光看看牠們吧。

 

摘自《寄生蟲圖鑑》,臉譜出版。

延伸觀看:

The post 殘酷的蟑螂殺手:扁頭穴蜂-《寄生蟲圖鑑》 appeared first on PanSci 泛科學.

2015台灣國際科展 民俗祕方、太空氣候、蟑螂觸角皆題材 

$
0
0

文/劉珈均、蔡佩容、簡韻真

台灣國際科展自2002年起舉辦,像個科學競技場,各國好手在此交流、過招,選手的競技選擇繁多,有數學、化學、物理與天文學、動物學、微生物學、醫學與健康科學、行為與社會科學等13科,看見這些只有15到18歲左右的國高中生,是如此努力地「應用所學增進人類福祉」,若你也(跟採編們一樣)抱憾自己高中時代被考卷淹沒,一起來看看上個月的科展有哪些中學生驚人研究,逛逛今年來自20國家、展出150件作品的有趣攤位吧!

青少年科學家得主

各科獲獎學生有機會被選派繼續參與美國、荷蘭等國際科展,大會評審並從13科的一等獎選拔出三件專題,成為科展最高榮譽「青少年科學獎」,今年由建中高一生陳韋同、台中一中高二生李嘉峻、來自美國的華裔高中生張杰西(Jesse Zhang)共同獲得這最大獎。

IMG_9015

由左至右分別為陳韋同、李嘉峻、張杰西。圖/劉珈均攝。

陳韋同已不是第一次進入國際科展複賽了,此次他設計「單點定位系統應用於無人飛行器控制系統」,厲害的地方在於,只要單一參考點,即可即時而精準的定位!目前常用的定位系統仍稍有不便,如GPS定位需要三四顆衛星,且無法用於室內追蹤;一般室內定位用的RSSI技術(Received Signal Strength Indicator)亦需要至少三個定位點,且訊號易受物體干擾或牆壁反射,常得多一道演算法抵消;無人飛行器常以相機定位,易有死角,也有妨害隱私疑慮。陳韋同讓定位點減少的方法是利用兩個旋轉速率不同的磁鐵產生磁場變化,只要測磁場的相位差,再配合分頻多工(Frequency Division Multiplexing)的數位訊號處理,就可得知物體在三度空間中的位置與角度,相當方便用於室內定位。年紀輕輕的他已在申請專利,除了應用於無人飛行器,也可延伸用在行動穿戴裝置、照護機器人甚至送餐機器人的室內定位控制,讓機器人更完美地執行任務。

Ocean_currents_from_GOCE

根據GOCE衛星資料繪成的地球洋流影像。photo credit:ESA/CNES/CLS

太空也要有天氣預報!大氣層最上層的熱氣層常受太陽風影響,讓空氣分子的密度產生變化,這也會影響到在這個高度巡弋的衛星。來自美國科羅拉多州的張杰西發現,除了太陽風之外,月球重力場也對大氣層上層的「太空天氣」影響甚鉅。他分析歐洲太空總署2009至2013年的的GOCE海洋環流探測衛星資料(Gravity field and steady-state Ocean Circulation Explorer, GOCE),由該衛星提供的地球磁場、地表冰層厚度及洋流等數據,計算出不受月潮振盪和地磁影響的結果。發現月球的重力也會影響增溫層的氣象,如同影響地球的潮汐一般,且影響力可以達到太陽風的 50 %。這個月潮信號(lunar tidal signature)的動態分布與氣層的相對密度及帶狀氣流(zonal wind)都有季節-緯度(seasonal-latitudinal)上的關係。

李嘉峻喜歡數學,在看書過程中看到有趣的題目,他以六個環狀數字為雛形,分析相間兩數字相減之後的絕對值,在這些環狀排列的條件下,探討其守衡狀態及其全數歸零的研究。李嘉峻說,不同於一般多以數論角度去解釋數列的性質,這專題提供另一個角度討論盧卡斯數列與梅森數列;就實際應用,守衡狀態中的同餘性質或許可用於通訊傳遞與密碼學的加密資料,不過這是否可行還要進一步探究。

颱風、鄉野傳說、攝影機腳架──生活即科學

每個家庭可能都有些祖傳秘方,從小立志當醫生的加拿大高中生艾蜜莉˙歐萊里(Emily O’Reilly)也不例外,她的科展作品靈感來自她克羅埃西亞爺爺的「民俗保健食品」──杏子(apricot)。幽門螺旋桿菌會引起胃黏膜慢性發炎,進而導致胃及十二指腸潰瘍,甚至胃癌。在她爺爺的家鄉,相傳杏子可以治療胃癌,歐萊里歷時一年作這實驗專題,她移去杏仁中的氰化物成份,以確定幽門螺旋桿菌不是被氰化物殺死,再將杏子萃取物加進幽門螺旋桿菌的培養皿,發現杏子萃取物的確能產生生長抑制圈。歐萊里的爺爺已過世,歐萊里以此專題紀念爺爺,她也期盼未來能進一步研究杏子對抗胃癌的功效及應用。

IMG_9000

加拿大高中生艾蜜莉˙歐萊里探討爺爺家鄉的「民俗保健食品」杏子是否真有抑制胃病的效用,以此專題紀念爺爺。圖/劉珈均攝。

人人喊打的外來入侵種「小花蔓澤蘭」嚴重影響台灣本土生態系。但是曉明女中的許芷瑄利用移植腫瘤到裸鼠身上,發現小花蔓澤蘭的葉和根莖萃取物有清除自由基的能力,以及保護紅血球不受自由基誘發溶血反應,研究也發現它可以抑制血癌細胞生長。換句話說,小花蔓澤蘭可能具有抗氧化及抗血癌的功效!若未來成功利用它開發預防自由基疾病及抗癌的保健食品,也許就能促使大家踴躍除去小花蔓澤蘭,讓台灣生態系鬆一口氣,還另外賦予了「害草」重大生存意義(天生我材必有用,突然有點勵志啊)。

每次颱風來襲,大家除了關心有沒有放假之外,也都會緊盯颱風轉來轉去到底會從哪裡登陸,來自美國的吳威廉(William Wu)也希望能找到預測墨西哥灣颶風登陸地點的方式。他分析超過八十筆颶風登陸的歷史資料後,發現颶風登陸地點與路徑的相關性。他將會指向登陸地點的颶風路徑的切線位置連起來,建立出三條紐帶,當颶風經過時,可以大致估計其前往的登陸地點,他說這種方法的平均預測誤差比目前美國國家颶風中心模型的預測誤差少了 50 %。

天文學專題在科展屬鳳毛麟角,今年北一女學生柯芷蓉與江郁儀從選修課的作業延伸發想專題,從高一斷斷續續作到高三,探討紅移與星系顏色的關係,此專題拿下物理與天文學科別首獎。天文學家用望遠鏡擷取遙遠星系的資料,而宇宙正在加速膨脹,導致星系的顏色會往光譜波長較長的紅光方向移動,此為「紅移」,天體距離愈遠,遠離速度愈快,紅移值愈高,紅移值可用於計算地球與天體的距離。柯芷蓉說,他們看到一篇研究(Strateva et al. 2001),該研究使用史隆巡天計畫(SDSS)釋出的數據推想,但當時SDSS尚未有紅移資料,因此該學者用星系的亮度推論紅移,設想愈暗的星系,離地球愈遠,紅移值也愈高,偏紅星系的紅移值高會偏紅,但偏藍的星系紅移值愈高則偏藍。「這感覺跟我們課堂聽到的天文知識相衝突。」他們決定深入探究。柯芷蓉說,SDSS後期的資料有紅移值,他們分析SDSS第7至12版本的57萬多筆資料,加入實際觀測的紅移數據,重新探討紅移值與星系顏色、亮度的關係,發現紅移與顏色並無絕對的線性對應關係,不能從亮度推論紅移,且偏藍星系紅移值高一樣偏紅。他們修正了原本缺乏資訊造成的誤差,讓星系資訊更精確。

IMG_9012

瑞士高中生埃利亞斯˙漢普的多軸手持腳架在現場吸引大批人潮。圖/劉珈均攝。

現場非常受歡迎的瑞士高中生埃利亞斯˙漢普(Elias Hampp)設計了多軸攝影機手持腳架,不論各種手持姿勢,腳架縱軸重心皆可巧妙的維持不變,其多軸關節緩衝手持給予的外力,讓影像維持平穩、不晃動,使用者也可調整螺絲位置,分配力矩配重。這腳架加上一台GoPro,簡直無往不利!只可惜腳架重量略沉了一點,小編熱烈期待以後是否有更輕巧的作品上市(若太輕巧,手持又容易晃動影像了,得抓到平衡點)。

國際科展有蟑螂入侵!

蜚蠊目 姬蜚蠊科 德國姬蠊 Blattella germanica  94昆蟲營 惠蓀林場

圖為德國姬蠊。photo credit: https://flic.kr/p/4Z7S7。

中山女高的生物老師蔡任圃有個綽號「蟑螂艦長」,他期望教育不只傳遞知識,更要引燃熱情,總是不斷鼓勵學生去闖。林沂萱、陳永文所做的《螂吞虎嚥》利用影像分析及電位記錄,探討斐蠊前腸的消化機制,結果發現牠們可以敏感偵測人體無法辨識的低揮發性物質,也會對可能影響酸鹼與滲透壓恆定的物質呈現趨避反應,未來也許可以利用這些趨避性來調配蟑螂藥。

另一組的姚乃筠、毛靖雯研究非真社會性昆蟲的蜚蠊,是否像黃蜂一樣,具有警告費洛蒙(alarm pheromone),能提醒其他個體逃亡或攻擊。結果發現自美洲蟑螂 (Periplaneta americana )分泌萃取的警告物質,具種內甚至是種間驅散效果,顯示其可能不為單一物種專屬的費洛蒙;此外,在不同性別與年齡間有不同的反應,推測分別有行為演化上的意義。未來也許可以利用以上兩組發現的趨避性甚至警戒物質,調配對環境傷害更小的蟑螂藥。

蟑螂總是惱人的爬上爬下,迅速躲開拖鞋攻勢,李欣玫與陳韻安探討蟑螂是不是能知道重力方向在哪裡。依據文獻資料,多數昆蟲用本體感受器如肌肉、關節、毛板等偵測身體各處的壓力,整合壓力資訊後才能推測出重力方向,這種方式需要較長的時間,若壓力資訊錯誤或身體各處壓力均等(例如被埋在沙子中),就會導致昆蟲判斷錯誤。蟑螂在地面、天花板、牆面等處爬行的過程中,重力方向不時變換,而蟑螂爬行速度又快,因此,李欣玫與陳韻安推論蟑螂身上有直接偵測重力的器官,讓牠可以迅速正確地判斷重力方向並作出反射以避免摔落,他們稱該器官為重力感受器(gravity receptor)。他們研究發現:蟑螂的觸角以及位於腹部末端的尾毛就是重力感受器;觸角需要兩側都存在才保有完整功能,尾毛只需單側即可;觸角的擺動可能是感測到重力方向改變後,產生的反射;蟑螂的尾毛有一種像小石頭的構造懸掛表面,與人類的耳石(同是與平衡有關的構造)十分相似,這種小石頭或許跟蟑螂感測重力有關,若之後有更多研究,找出相關的平衡機制,也許未來可以利用蟑螂來研究與人類前庭系統(包括耳石)相關的疾病。困擾很多人的暈眩症就是跟耳石有關,但耳石在耳朵裡,又小又不好找,若能利用長在蟑螂尾毛表面的小石頭研究應該會方便許多。

社科學生站出來 科展不由理工組「壟斷」

在這充滿自然組與理工氣息的場合,「行為與社會科學類」的攤位顯得獨樹一幟,國外科展多有此項目,台灣國際科展則是近三年才新增此科別。

北一女學生黃以寧與孟玉婕研究身障者與消費行為,過去研究顯示,不論是求職或消費,身障者常受到不平等待遇,黃以寧與孟玉婕換個角度想,若讓身障者轉換角色,位於生產者端,所受待遇如何?她們到夜市擺攤,請同一人分飾正常人與坐輪椅的身障者兩個角色,賣飲料六天,她們觀察記錄輔以問卷,分析來往一百多位顧客的行為。她們調查發現,年齡較高或是平日不常購買飲料的消費者,向身障業者購買飲料的比例及可能性較高(雖然購買行為受飲料吸引程度影響極高),這些族群的消費行為可能更受同理心驅策,其他變項如性別則較不顯著。她們希望藉由這些研究未來可以幫助身障業者,在打動消費者的時候做到更有效的行銷。

南非高中生蕾雅˙法蘭區(Leia French)自己設計遊戲「Gaming for Social Change」,在遊戲關卡中埋入社會議題暗示,希望以遊戲喚起對南非社會議題的關注,例如缺水問題、基礎建設不足、煤油燈造成的火災。蕾雅以問卷分析90位玩家玩遊戲前後的價值觀改變,發現這類遊戲能較輕鬆而更貼近生活的方式,喚起大家對社會議題的重視。

有趣的作品太多實在寫不下,對其他專題作品有興趣的讀者可以上科教館的網站看更多歷年的得獎作品。

 

The post 2015台灣國際科展 民俗祕方、太空氣候、蟑螂觸角皆題材  appeared first on PanSci 泛科學.

這是一段愛與蟑螂的故事

$
0
0

大概沒有一種動物能像蟑螂一樣這麼能引起大家相同的共鳴,並串聯起多個世代的恐懼。我們總是很難直接面對牠,恨不得在下一秒牠就消失在自己的面前。就算是這樣的蟑螂,為了生殖當然還是有屬於牠們的愛的故事,而且其實意外的精彩。

所以這是一段可能沒有人要聽,但我還是要說的愛情故事。

幾乎所有種的雄性蟑螂,就算精盡但只要蟑螂不亡,都會和多個雌性交配;所以蟑螂交配的分類多是建立雌性的行為上。但蟑螂多是夜行性且交配的時候跟我們一樣也會找個隱密的地方偷偷進行,所以在野外的蟑螂其實就很難確定牠們實際的交配行為。

動畫中為了敘事需要而把蟑螂的交配分成若干種,讓美洲蟑螂小強好選擇牠的愛情動作片。但就像上一段說的,研究多只能從雌性蟑螂的交配行為去分類,所以大致能將蟑螂的交配行為分為兩大類:一夫制和多夫制。

螢幕截圖 2015-08-12 11.41.23

一生只愛你一個

至少知道有兩種蟑螂就算沒有綁貞操帶,也實行著非常嚴格的一夫制(monandrous )。Neopolyphaga miniscula 和七星蟑螂(Therea petiveriana)牠們不只一夫,而且還只交配一次。一旦交配完成後,雌性的餘生就很難再受精,甚至還會用後腿去擊退其他的追求者。

[圖一] 七星蟑螂,其實他長得蠻美的啊。 source:Josh More

七星蟑螂,其實他長得蠻美的啊。source:Josh More

而被飼養著的隱尾蠊屬(Cryptocercus)的蟑螂,會建立類似社會化的一夫一妻制,能維持著長期的配對關係並形成家庭。雖然目前還沒辦法從遺傳的層次上去定義這樣的行為,但可以觀察到這些蟑螂額外交配的情形很少發生。只要雌性和雄性配對,牠們就會組成家庭並一起抵禦外來的入侵者,包括其他想把走雌性蟑螂的雄性蟑螂。

你或許會懷疑,難道牠們就不會犯天底下的蟑螂都會犯的錯嗎?觀察Cryptocercus punctulatus的交配行為時間約在30~40多分鐘左右,因此牠們要偷偷摸摸的交配卻不被發現是不可能的。

隱尾蠊屬。 source:tolweb

隱尾蠊屬蟑螂。source:tolweb

這一屬的蟑螂如果真的有不忠的時候,大概就只有剛成為成蟲但還沒有配對之前,雖然這應該頂多只能說是婚前性行為而不算是偷情吧。春季和初夏的時候,還會找到很多的單身蟑螂,這些單身蟑螂會夏天的好時節配對,之後一起渡冬並在下一個夏天產下牠們的後代。聽起來美得像幅畫啊,如果我不提醒你牠們是蟑螂的話。

雖然單次交配的精子量就足夠讓雌性蟑螂的卵受精,但牠們還是會不只交配一次。這行為非常有趣,因為在產卵之前多次的交配有可能是為了親緣保證;但在產卵之後的重複交配行為就變得很難解釋了(或許隱尾蠊屬蟑螂會說:要你多管閒事>//艸//<)。

觀察也發現,有盡到父親責任的雄性蟑螂的品種,牠們的交配頻率特別高。或許在這配對關係中演變出的多餘交配,可能是雌性為了去獨佔雄性好讓牠們能撫育後代,並同時剝奪雄性去偷腥機會的手段。(高招啊!)

目前還不曉得這樣重複交配的模式是否會發生在像是木蠊(Salganea)等其他一夫制的蟑螂,牠們也會組成家庭,並有長期的親子照護關係。

腳踏多條螂——不只你有小三,我也有小王

前面的蟑螂讓人想在故事後面加上「從此過著幸福快樂的日子」,但其實大部份的蟑螂仍是多夫制(polyandrous)的。

雌性蟑螂的一生中會有多次的生殖週期,有些品種的蟑螂在牠每段生殖週期當中雖然可能是一夫制,但多段的生殖週期加總起來,牠整段的生殖壽命(reproductive life)仍會被認為是多夫制,這被稱為序列式一夫一妻(serial monogamy)。就算每次談戀愛都像初戀一樣,但真正的初戀還是只有一個啊。

這些品種的雌性蟑螂接受雄性蟑螂的感受性是會週期性循環的,一個生產週期包括:接受、交配、產卵、卵孵化的循環,他們在一個生殖週期只會交配一次,且感受性會在交配過後急遽下降。有一些品種在找到下一個交配對象前會經過多個生產週期,有些則在每次生產行為過後感受性就會恢復。

比較常見的德國蟑螂(Blattella germanica, 也稱德國姬蠊) 和亞洲蟑螂(Blattella asahinai) 都會反覆交配,雖然他們在單次交配時產生的精子量就已經足夠提供雌性蟑螂在剩餘的生殖壽命使用。雌性的美洲蟑螂(Periplaneta americana)以這種交替交配的方式生產卵鞘,並可能會在產完卵的3-4小時候又進行交配。

亞洲蟑螂。source:wikimedia

亞洲蟑螂Blattella asahinai。source:wikimedia

也有觀察到一對Ellipsidion humerale在一個月內交配四次,交配的行為與生產卵鞘交替。 對Eublaberus posticus來說也是除了第一次的交配以外,後續的重複交配行為並不會增進生產表現;但仍然觀察得到牠們的重複交配行為。

Ellipsidion humerale. source:Bill & Mark Bell

Ellipsidion humerale. source:Bill & Mark Bell

那有單次生產週期卻發生很多次的交配行為嗎?研究有觀察到這樣的雌性蟑螂,但這些案例通常是例外而非是研究品種當中的通則。

有研究在超過200隻雌性德國蟑螂中記錄到一次雌性於第一次產卵前交配2次,在其他的研究中也曾注意到有一對德國蟑螂於24小時中交配2次。不只是德國蟑螂,也有研究觀察到褐帶蟑螂(Supella longipalpa)可能於一天之中發生1或2次交配。

說了那麼多,但其實關於蟑螂的交配行為,還有很多細節還存在在迷霧當中;畢竟要觀察到野外的蟑螂交配不太容易。如果小強真能說話,搞不好會告訴我們一段比瓊瑤還要蕩氣回腸的愛情故事。

參考資料:

  • Cockroaches–ECOLOGY, BEHAVIOR, AND NATURAL HISTORY.  William J. Bell, Louis M. Roth,Christine A. Nalepa. Foreword byEdward O.Wilson.

The post 這是一段愛與蟑螂的故事 appeared first on PanSci 泛科學.


除了你家的小強,還有其他漂釀的蟑螂

$
0
0

蟑螂,這麼可怕的生物,怎麼會有人當成寵物飼養呢?蟑螂最古能追朔到石炭紀(約三億年前) [1],而現存的蟑螂中除了熟知的「小強」,在古巴還有晶瑩剔透的綠蟑螂,澳洲有愛挖洞又充滿慈愛光輝的犀牛蟑螂,以及用聲音彼此溝通的馬達加斯加蟑螂等。就讓我們來看看這些有趣的蟑螂家族吧~

晶瑩剔透的水果蟑螂-古巴蟑螂 

在加勒比海一帶有種晶瑩剔透、喜吃水果的蟑螂。中文的名字是古巴蟑螂(Panchlora nivea),或稱綠香蕉蟑螂,外型如同名稱一般,翠綠色的身軀附著黃白色的翅膀,長約1-2公分,由於外型亮麗,也被作為寵物昆蟲飼養。和我們所熟知的蟑螂不同,古巴蟑螂愛吃的是香蕉、棕櫚樹皮和可可樹葉,雖然聽起來非常無害,但由於牠們的食物同時也是經濟作物,所以對於農家而言仍屬害蟲的一種 [2]。

Panchlora nivea

Source from Pavel Kirillov

蟑螂界的聲樂家-馬達加斯加蟑螂 

馬達加斯加蟑螂(Gromphadorhina portentosa)的原產地如同於名稱,牠原生於非洲外海的馬達加斯加島。成體長度5-9公分(註:iPhone 6 Plus寬度約為7.8公分)[3],最吸引人的特徵是馬達加斯加蟑螂不論性別、成體或幼蟲,都能透過體表的透氣孔發出明顯的嘶嘶聲,而最讓科學家和飼主著迷的就是這聲音的用途。科學家發現,雄性在求偶和交配時,都會發出不同的嘶嘶聲,而如果兩隻雄性正相互對戰,雙方的嘶嘶聲甚至可以代表著誰是此戰役的贏家 [3]。由於特殊的外型和有趣的聲音,許多昆蟲飼主們也十分喜愛馬達加斯加蟑螂。

Gromphadorhina portentosa

Source from wikimedia

超重量級蟑螂-犀牛蟑螂

犀牛蟑螂(Macropanesthia rhinoceros在蟑螂界有巨人的稱號,外型猶如鋼鐵人的「浩克毀滅者」,粗壯且渾身蓋滿硬甲。成體長約8公分,重量可超過30公克[4]而德國蟑螂成體一般約在0.05公克 [5],兩者相較之下,犀牛蟑螂確實稱的上是蟑螂界的巨人。目前只生活在在澳洲的東北方,喜食尤佳利樹的落葉,是生態圈極為優秀的回收者。犀牛蟑螂有著這麼粗壯的外型卻有著慈愛的個性,當幼蟲被孵育而出後,成年蟑螂至少會撫育牠們6個月,直到後代能夠獨立成家為止 [6]。

Macropanesthia rhinoceros

Source from ArachnoVobicA

###以下將介紹大強&小強,附生動照片,膽小者慎入~###

蟑螂家族裡的閃電俠-美洲蟑螂 

美洲蟑螂(Periplaneta americana)就是大家口中俗稱的「小強」,身長可達4公分,是台灣最常見的居家型蟑螂之一。牠們喜歡住在陰暗且高濕度的環境,喜食腐敗的食物,所以算是生態系統的清道夫 [7]。但美洲蟑螂一旦開始與人類同居,絕不挑食的飲食習慣成了人類最頭痛的問題,膠水、書籍、頭髮、皮革和啤酒等,凡是能咬的東西通通來者不拒 [8]。而讓人瞠目結舌的是牠那神速的移動能力,加州大學柏克萊分校(University of California, Berkeley)曾測得美洲蟑螂的速度為5.4 公里/小時,相當於每秒飛奔40-50個身長,以人類的標準來說,我們的奔跑速度得要提升到約300公里/小時才能跟牠並駕齊驅 [9],並且由於具備飛行能力,受到驚嚇時會四處亂竄或「啪答啪答」地振翅飛行,對於許多人來說,遇到這種會飛的蟑螂,真的算是一種夢魘…

Periplaneta americana

Source from wikimedia

「啪嘰!」跑出更多小蟑螂!-德國蟑螂 

「『啪嘰』!擊斃蟑螂後不到1秒,數十隻小蟑螂從屍體中逃出,飛竄上拿著拖鞋的手…」,這可不是網路恐怖故事,將卵鞘帶在身上直到孵出後代為止,正是德國蟑螂(Blattella germanica)的特性之一 [10]。德國蟑螂長約1公分,由於身型較小,喜歡群居,反而比美洲蟑螂更難被殲滅,而卵鞘內可以有30-40顆卵,換句話說,打死一隻母蟑螂,換來的可能是數十隻小蟑螂飛竄而出的景象。德國蟑螂的飲食習慣跟人類很像,雖然曾被記錄吃過肥皂和牙膏,但牠最愛的仍是高糖類、高油脂的食物,因此在家中儲藏甜點及油炸餅乾的食物櫃,很自然地就成了德國蟑螂眼中的美食自助吧 [11]。

1

左右圖皆為德國蟑螂, 右圖為攜有卵鞘的母蟑螂, 來源皆為wikimedia

 參考文獻

  1. Marion Copeland (2012) Cockroach (Animal) Reaktion Books
  2. William H. Robinson (2005) Urban Insects and Arachnids: A Handbook of Urban Entomology, Cambridge University Press
  3. Margaret C. Nelson, Jean Fraser (1980) Sound production in the cockroach, Gromphadorhina portentosa: evidence for communication by hissing, Behavioral Ecology and Sociobiology, 6(4), 305-314
  4. W.V Brown, H.A Rose, M.J Lacey, K Wright (2000) The cuticular hydrocarbons of the giant soil-burrowing cockroach Macropanesthia rhinocerosSaussure (Blattodea: Blaberidae: Geoscapheinae): analysis with respect to age, sex and location, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,127(3), 261-277
  5. Yuping Wei, Arthur G Appel, William J Moar and Nannan Liu (2001) Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica(L), Pest Management Science, 57(11), 1055-1059
  6. Liangwen Xu, Edward P. Snelling, Roger S. Seymour (2014) Burrowing energetics of the Giant Burrowing Cockroach Macropanesthia rhinoceros: An allometric study, Journal of Insect Physiology, 70, 81-87
  7. Jones, Susan C. (2008) Agricultural and Natural Resources Fact Sheet: American Cockroach, Ohio State University
  8. Adiyodi, K.G. (1981) The American Cockroach, Springer
  9. Marko B. Popović (2013) Biomechanics and Robotics, CRC Press
  10. William J. Bell, Louis M. Roth, Christine A. Nalepa (2007) Cockroaches: Ecology, Behavior, and Natural History, Johns Hopkins University Press
  11. Michael K. Rust, John M. Owens, and Donald A. Reierson (1995) Understanding and Controlling the German Cockroach, Oxford University Press

The post 除了你家的小強,還有其他漂釀的蟑螂 appeared first on PanSci 泛科學.

地上的紅豆不要亂撿! 關於蟑螂卵鞘的二三事

$
0
0

「咦?廚房的地上怎麼會掉了一顆紅豆?」,也許你曾在地板上撿起一顆疑似紅豆的不明物體,正當困惑之時,爸媽卻尖叫著「那是蟑螂!」,然後要你拿拖鞋把它打扁!究竟,那是什麼東西呢?繼上篇「這是一段愛與蟑螂的故事」講述蟑螂的床第之愛,本篇將介紹那些日夜忠實地守護著我們廚房的小動物們-蟑螂,牠們如何撫育下一代的故事。

預約下一代幸福的美洲蟑螂

當雄性美洲蟑螂遇見雌蟑螂,雙方乾柴烈火且完成終身大事後(請見「小強!你怎麼了小強」之 蟑螂啪啪啪(交配篇)),作父親的會拍拍屁股一走了之,只留下母蟑螂思考照顧下一代的問題(做父親的醬子不行啊…)。母蟑螂會產出一顆「卵鞘」,將能孵化成小寶寶們的卵藏在裡頭。

美洲蟑螂的卵鞘呈暗褐紅色,外型像顆紅豆似的,就連顏色都相差無幾 [1]。裡頭通常內含16顆蟑螂蛋,平均能孵化出14-16隻小蟑螂 [3]。由於美洲蟑螂的天性並不會撫育下一代(改觀吃木頭的犀牛蟑螂卻會養育幼子),因此母蟑螂會尋找靠近食物的地點產下卵鞘,並用口中的黏液緊緊的將卵鞘固定在食物的附近 [1]。這也就是為什麼通常會在廚房、浴室等的排水孔附近發現卵鞘,因為那些地點食物較多、水氣充足,又不容易被天敵發現,於是就成了母蟑螂眼中最好的育幼地點了。

蟑螂蛋在許多動物的眼中是美味的食物(研究分析,美洲蟑螂的卵鞘含有約50%的蛋白質及約2%的油脂 [5],而狀似卵鞘的紅豆,蛋白質的比例約20%、油脂<1%、醣類約60% [7])。在大自然中,瘦蜂(Evania appendigaster L.)就是蟑螂的天敵之一,母瘦蜂會嗡嗡嗡地會搜尋蟑螂卵鞘,將蜂卵產在卵鞘之中,如此小瘦蜂的成長過程中,不僅能受到卵鞘的保護,更有豐富的食物來源 [3]。

由於美洲蟑螂大約每個月可產下一個卵鞘,而每顆卵鞘又能孵出15隻左右的小蟑螂,所以如果認真養育一對美洲蟑螂的話,一年後就能獲得大約150隻活潑又熱情的美洲小蟑螂囉~[1](尚未計算小蟑螂彼此之間也會生出更多小蟑螂)

==美洲蟑螂卵鞘圖片分隔線==

以下

圖片

請在

飯前

使用

謝謝

您的

合作

美洲蟑螂卵鞘

美洲蟑螂卵鞘。Source from wikimedia

親力親為的德國蟑螂

替子女尋找一個適合成長環境的美洲蟑螂媽媽,已經讓我們感受到昆蟲界的母愛了,而身為居家型蟑螂最大宗的德國蟑螂 [4],其母愛就更偉大了~

懷孕的母德國蟑螂並不會特意地尋找一個溫暖又充滿食物的環境(沒錯,這裡作爸爸的又不見了……),這太不負責任了!充滿母愛的德國蟑螂媽媽會將卵鞘懷抱在腹部(正確來說,並不是「抱住」),所以母親可以保護著幼蟲們直到孵化為止 [6],也因此如此,德國蟑螂也比較不易受到寄生蜂的攻擊,不過也不是完全沒有風險,攜帶了沉重的卵鞘也會讓母蟑螂行動緩慢,容易遭到拖鞋的攻擊,所以下回看到行動遲緩的德國蟑螂,可以多觀察一下,也許你看到的正好是隻帶著卵鞘的母蟑螂喔!

==德國蟑螂+卵鞘圖片分隔線==

 

(由於實在太恐怖了,所以編輯部貼心的關燈了。若能承受的話,請點擊看原圖。)

 

 

 

德國蟑螂和卵鞘。Source from wikimedia

德國蟑螂和卵鞘,心理能承受超恐怖圖片請點擊看原圖。Source from wikimedia

如何有效殺死卵鞘裡的卵

當然,也不是每個人都這麼愛這些小動物們,關於如何消滅卵鞘裡的卵,各國的科學家做了許多研究(當然不是用各國的拖鞋),我們就以台灣科學家的研究來為大家說明,如何殺死卵鞘中的蟑螂蛋。以下滅蟑方式由國立中興大學陳玲玫 碩士以及黃紹毅 教授所進行實驗,我們同時感謝為了本研究所犧牲的美洲蟑螂寶寶們 [2, 3]。

在研究中,陳玲玫設計了四種方式對付美洲蟑螂的卵鞘,分別放進冰箱冷凍、放進烤箱烘烤、照射紫外光和曝曬在充滿輻射的環境之下(γ射線),再看看蟑螂幼蟲是否能夠孵化成功。結果如下 [註1, 2]:

  正常環境 冷凍 加熱 紫外光 γ射線
孵化率 90-100% 0% 0% 全部孵化 0%

結果可以發現,不論是丟進冰箱或是丟進烤箱,都可以有效的殺死蟑螂卵,所以下次當你在廚房地板上發現疑似的紅豆的蟑螂卵鞘時,就知道該怎麼做,才能夠避免越來越多的蟑螂寶寶們在你們家繁衍子孫,越長越多囉~

  • 註1:冷凍為六小時的-16 ˚C環境;加熱為六小時的50 ˚C的環境;紫外光為2.5小時且波長254 nm;γ射線劑量為20Gy
  • 註2:通常蟑螂擁有很好的輻射抵抗力,但因為卵鞘中的幼蟲正值成長的時期,體細胞有絲分裂旺盛,因此對輻射對於幼蟲的殺傷力也就比較明顯。

參考文獻

  1. K. A. Barbara (2014) American Cockroach, Periplaneta americana (Linnaeus) (Insecta: Blattodea: Blattidae). University of Florida
  2. 陳玲玫, (民92, 1月)美洲蜚蠊卵鞘的四種處理對瘦蜂寄生暨發育之影響, 國立中興大學昆蟲學系, 中華民國, 台灣台中市
  3. William J. Bell, Louis M. Roth, Christine A. Nalepa (2007) Cockroaches: Ecology, Behavior, and Natural History, Johns Hopkins University Press
  4. 中華民國食品藥物管理署,食品營養成份資料庫. https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178
  5. Michael A. Baumholtz, MS, Lawrence Charles Parish, MD, Joseph A. Witkowski, MD, and William B. Nutting, PhD (1997) The medical importance of cockroaches. International Journal of Dermatology, 36(2), 90-96
  6. M. Lihoreau, J. T. Costa, C. Rivault (2012) The social biology of domiciliary cockroaches: colony structure, kin recognition and collective decisions. Insectes Sociaux, 59(4) 445-452
  7. Shaw-Yhi Hwang and Ling-Mei Chen (2004) Effects of Four Physical Treatments of Oothecae of Periplaneta americana on Parasitism and Development of Parasitic Wasp Evania appendigaster, Environmental Entomology, 33(5), 1321-1326

The post 地上的紅豆不要亂撿! 關於蟑螂卵鞘的二三事 appeared first on PanSci 泛科學.

與恐龍生活到和人類同居:蟑螂的超強適應力

$
0
0

琥珀中的蟑螂化石

那顆透明鵝黃色的琥珀,透出亮黃色的光芒,它包覆了一隻曾和恐龍生活過的遠古蟑螂,保留住了遠古的一瞬間,將千萬年前的地球濃縮在一顆透明的石頭之中 [1]。Peter Vršanský的研究團隊仔細地端詳著這隻好久、好久以前的蟑螂,思考著,牠能夠告訴我們什麼故事呢?

昆蟲的祖先遠從石炭紀(約三億年前)就開始生活在地球上,並且從二疊紀大滅絕(約二億五千萬年前)後開始繁盛,而其中一支網翅總目(Dictyoptera)的昆蟲,和恐龍一同演化(恐龍約在二億三千萬年前出現),食肉的螳螂目(Mantodea)首先分家,演化成現代的螳螂。而蜚蠊目(Blattodea)的兄弟則吃起了雜食和木頭,站穩了生態圈的分解者角色。一支保留了少許的社會性風格,演化成現代蟑螂,另一支蜚蠊目昆蟲則是將社會性推向了至高點,成了真正的社會性蟑螂-也就是我們現在熟知的白蟻家族 [2]。

什麼都吃:恐龍的便便、人類的垃圾

Peter Vršanský等人用x光掃視了這隻還不到4公厘的遠古蟑螂,在檢視消化道過程中,發現了植物的顆粒,並在植物顆粒的表面上,有著被動物消化的痕跡。有鑑於當時稱霸地球的草食性動物就是恐龍,研究團隊這麼地寫了:「草食恐龍的糞便化石這麼難被找到的原因,就是因為遠古的蟑螂扮演了完美的清除者嗎?」

12041328_986855574687266_284468954_o

現代蟑螂的環境,比遠祖更加的複雜,在人類環境裡的垃圾,如:膠水、腐敗物、頭髮等,都是蟑螂的食物。生物學家很早就在思考,為什麼蟑螂吃了這麼多細菌,都不會生病呢?自從佛萊明(Sir Alexander Fleming)爵士在1928年發現了盤尼西林後,抗生素和細菌近百年的惡戰就此展開。近年來從微生物取得新藥的方法漸漸地枯竭,科學家將目光轉向蟑螂,牠們獨樹一格的免疫系統成了抗生素的新希望。

昆蟲體內有酚氧化酶(phenoloxidase)擔任第一道防線,能產生許多劇毒的氧化物(如:超氧化物/superoxide、雙氧水/hydrogen peroxide、高活性氮化物/reactive nitrogen intermediate),無差別地殺死外來的細菌和真菌 [3]。但蟑螂的防禦系統可沒那麼簡單,科學家曾做過試驗,將細菌注入美洲蟑螂體內,藉此刺激它們的血淋巴系統(hemolymph) [註],產生具有專一性的抗菌蛋白。再取出蟑螂的體液,結果發現蟑螂的血淋巴能夠消滅75%的細菌,其中包含了醫院常見的感染菌-金黃色葡萄球菌和大腸桿菌 [4]。今日我們所厭惡的蟑螂,在未來很有可能就會變成藥廠老闆們眼中的可愛員工了。

  • 註:昆蟲的結構並沒有將血液和淋巴系統分開,因此在牠們體內流動的並非血液,亦非淋巴液,故稱血淋巴(hemolymph)。

反應能力:人類比不過蟑螂

那隻琥珀中蟑螂也許已經結束了牠的故事,但牠的後代們,持續地寫著蟑螂的故事,經歷了幾千萬年的演化,現代蟑螂已經將身體的能力強化到不可思議的地步。前文 <除了你家的小強,還有其他漂亮的蟑螂> 已經敘述了蟑螂的高速奔跑能力,那麼牠們的瞬間反應力呢?

古代時,和恐龍同居要閃躲牠們的腳步,而現代蟑螂搬進了水泥住宅,貓咪和人類仍舊是一大威脅,因此蟑螂練就了反應快速的神經系統。和人類不同,蟑螂的神經中樞並非一黨獨大,腦、胸、腹等神經節,各自控制著身體不同部位的動作(所以切除部分身軀仍可快速行動)。

權力下放的策略加速了蟑螂的神經反應 [5],而腹面和腳上遍佈的剛毛能感受到輕微的風吹草動,遠在你走近蟑螂之前,牠就早已逃之夭夭。曾有科學家用氣流對美洲蟑螂進行測試,從氣流的啟動到蟑螂逃逸,中間的反應時間僅有短短的11毫秒(msec)。那一般人類在面對危難時的反應時間呢?大約是0.5秒 [6]。

YBfqgj5pU_n5XfSyMobRXZF4yTp1xkvnYcZjVwF04og

70年前,原子彈首次被用於戰爭之後,地球的核子滅絕就成了人類最恐懼的事情。倘若輻射籠罩戰區,人類和蟑螂,那個先陣亡呢?遠在美、俄對立的冷戰時期,Mary H. Ross, D. G. Cochran兩位學者就解答了這個疑惑。牠們以德國蟑螂為模型,研究了蟑螂對於輻射線的抵抗力。結果顯示,大約需要6400-9600 雷得(rads)才能殺死德國蟑螂的成蟲,若僅針對細胞分裂旺盛的生殖系統,則降到約3200 rads就能讓德國蟑螂不孕 [7]。但以人類這種生物來說,半致死率僅有約400-500 rads而已 [8, 9]。仔細想想,大自然真的很厲害。

寫在文末

在撰寫此篇文章,腦海中時不時的會浮現「火星異種」這部漫畫。我並不喜歡作者的設定,為什麼蟑螂一定要演化成跟人類一樣:重心不穩的雙腳站姿、無法全開的上下顎、窄視野的視覺系統呢?蟑螂自己的演化策略,後代多、速度快、身型極小,明明就比人類更能夠面對艱困的火星環境啊!

參考文獻

  1. Peter Vršanský, Thomas van de Kamp, Dany Azar, Alexander Prokin, L’ubomír Vidlička, Patrik Vagovič (2013) Cockroaches Probably Cleaned Up after Dinosaurs, PLoS ONE, DOI: 10.1371/journal.pone.0080560
  2. 深山虫吟, 解碼昆蟲的家譜, 果壳网
  3. Isaac González-Santoyo and Alex Córdoba-Aguilar (2011) Phenoloxidase: a key component of the insect immune system, Entomologia Experimentalis et Applicata, 142, 1-16
  4. Milad Latifi; Mohammad Yousef Alikhani; Aref Salehzadeh; Mansour Nazari; Ali Reza Bandani; Amir Hossein Zahirnia (2015) The Antibacterial Effect of American Cockroach Hemolymph on the Nosocomial Pathogenic Bacteria, Avicenna journal of clinical microbiology and infection, 2, e23017
  5. Josh S. Titlow, Zana R. Majeed1, H. Bernard Hartman, Ellen Burns, Robin L. Cooper (2013) Neural Circuit Recording from an Intact Cockroach Nervous System, Journal of Visualized Experiments, 81, e50584
  6. 中華民國交通部運輸研究所90.04.24.運安字第900002569號函
  7. Mary H. Ross, D. G. Cochran (1963) Some Early Effects of Ionizing Radiation on the German Cockroach, Blattella germanica, Annals of the Entomological Society of America, 56, 256-261
  8. 趙楷,陳兼善,孫克勤,趙德銘,賈福相,翁 (1998) 正中動物學辭典,正中書局,中華民國
  9. 許文林,放射治療之基本原理,中華民國三軍總醫院官方網頁

The post 與恐龍生活到和人類同居:蟑螂的超強適應力 appeared first on PanSci 泛科學.

居家蟑螂剋星:蜚蠊瘦蜂—《都市昆蟲記》

$
0
0

或許你曾在家裡見過一種長約一公分、體型如蒼蠅般的黑色小飛蟲;父母、兄弟姐妹中也許總有人認得,卻不一定叫得出名字。這種生物生著一對藍色具光澤的眼睛、纖細的「腰部」,以及總是擺動著的扁扁腹部。由於牠的後足較長,且外表黑色,乍看又像是一隻蟋蟀。當牠出現在你面前,往往時而飛行,時而於地面爬行。

D3-1

蜚蠊瘦蜂(Evania appendigaster)的頭部特寫。圖/天下文化提供

假若哪天在家裡發現了,可先別急著拿蒼蠅拍、電蚊拍,打算把這小蟲「除之而後快」。因為牠可是蟑螂的天敵呢!牠是產於溫帶、亞熱帶地區,名為「蜚蠊瘦蜂」的卵寄生蜂。蜚蠊瘦蜂在分類上為膜翅目瘦蜂科。由於瘦蜂的腹部時常連續擺動,因此瘦蜂又有「旗蜂」、「旗腹蜂」之稱。

小強怕怕

蜚蠊瘦蜂與蟑螂之間有何關係,暫且先從蜚蠊也就是俗稱的蟑螂談起。蜚蠊是昆蟲綱蜚蠊目昆蟲的通稱,這類昆蟲通常具有扁平的身軀、布滿刺的足、細長的絲狀觸角,頭部大部分面積為前胸背板所蓋住,很容易讓人一眼認出。野外的蜚蠊通常以有機質為食,然而居家場所中的蜚蠊,喜出入髒亂環境、啃食食物殘渣,因而常會造成廚具、食物等物品的污染,促成病原菌、寄生蟲的散布。牠們停留過的地方,又常留下分泌物的異味,以及黑色的排泄物,這些現象不僅讓人覺得不舒服,蜚蠊的分泌物和排泄物也被認為是造成過敏、引起氣喘的成因之一,有很多因接觸蜚蠊而造成皮膚炎的案例。基於以上的種種理由,蟑螂帶給人們骯髒的刻板印象,令人聞之色變。

D3-5

美洲蜚蠊(Periplaneta americana)在室內或戶外垃圾堆都有機會見到,是蜚蠊瘦蜂的寄主之一。這種蜚蠊的前胸背板底色為橙色,中央具有褐色斑塊。圖/天下文化提供。

雖然人類不樂見其在家中定居,但蟑螂終究是社區中常見的生物。而這蜚蠊瘦蜂就是一種以蟑螂卵鞘為寄生對象的卵寄生蜂,亦即,牠們會寄生蟑螂卵,減少蟑螂的數量。由於蜚蠊瘦蜂成蟲能靠著嗅覺搜尋蟑螂新產下的卵鞘,所以便伴隨著常在人類的家中出現。已知蜚蠊瘦蜂的寄主有澳洲蜚蠊、美洲蜚蠊、棕色蜚蠊、家屋斑蠊等。

蜚蠊瘦蜂的剋蟑過程

當蜚蠊瘦蜂成蟲鎖定了目標蟑螂的卵鞘,即伸出產卵管刺入,將自己的卵產於其中。蟑螂的卵鞘對蜚蠊瘦蜂而言有如「育嬰室」,不僅供應其幼蟲階段發育所需之養分,也是其生長的場所。蜚蠊瘦蜂幼蟲孵化後,便寄生其中,一面以蟑螂卵粒為食、一面發育著,直到長至蟲體大小佔滿整個卵鞘,隨後並在其中化蛹。

蟑螂卵鞘又稱卵囊,是一群卵粒的集合。雖然其卵鞘裡面含有數十粒卵(例如美洲蜚蠊的卵鞘內含約 16 粒卵,澳洲蜚蠊卵鞘含有約 20 餘粒卵),每個蟑螂卵鞘僅能讓一隻蜚蠊瘦蜂發育,因此蜚蠊瘦蜂一般每次僅產一粒卵。換句話說,一隻幼蟲的寄生,至少可以摧毀十幾隻即將誕生的蟑螂

羽化以後,成蟲便突破卵鞘離去,進行交尾、產卵,傳遞下一個世代。蜚蠊瘦蜂成蟲以花蜜為食,行自由生活,喜愛訪花。除了居家環境,其實在平地至低海拔山區也可見其蹤影。

初羽化的蜚蠊瘦蜂雌蟲便能進行產卵,無論交尾與否;雌蟲所產下的卵中,未受精卵將孵化為雄性,受精卵則產生雌性後代;因此未經交尾的雌成蟲將只產下雄性後代,交尾完成者則能分別產下雌與雄的個體。雄蟲可行多次交尾,但雌蟲一生僅交尾一次。

請蜂來殺蟑?

既然蜚蠊瘦蜂這種蜂能夠消滅蟑螂卵鞘,那麼世界上有沒有會直接攻擊蟑螂成蟲的蜂類呢?有的,在熱帶地區有某些長背泥蜂科的種類,該科的蜂身形酷似螞蟻,也是蟑螂的天敵。特別的是,這些蜂專門獵捕蟑螂的成蟲或若蟲,將之拖入巢中,做為其後代的食物。部分種類於台灣低海拔山區亦可發現,但遠不如蜚蠊瘦蜂那般常見了。

D3-2

蜚蠊瘦蜂的外觀。圖/天下文化提供。

看來,昆蟲中常見的蟑螂天敵,還是蜚蠊瘦蜂當之無愧。蜚蠊瘦蜂不僅能夠適應人類的生活圈,又是蟑螂殺手,能抑制其繁殖。既然如此,有沒有可能考慮請一些專業人員在市區裡大量飼養,然後分送給家家戶戶,造福縣市鄉里?

這個想法可能行不通。當成群貌似蒼蠅的小蟲在屋裡飛動,你我的家人恐怕不會有什麼正面反應,甚至會感到恐懼吧?而且過不了多久,還會留下一堆蟲屍、殘骸。相較之下,想要防除蟑螂,維持室內整潔、定期清理垃圾,這樣的做法更是容易可行。乾淨的環境自然能減少蟑螂滋生,也讓蟑螂沒有地方躲藏,應該才是防除蟑螂最簡單有效的方式!


a5aaaab1fe645ce943f254d83688ba45

 

大多數生活於都會環境的人們,可能除了蝴蝶、甲蟲等明星昆蟲物種之外,往往對許多生活於周遭的常見昆蟲視而不見。《自然老師沒教的事6:都市昆蟲記》是第一本以台灣都會環境為出發點的昆蟲專書,專門介紹都會居住環境中的常見或特殊昆蟲,這些出現在都市裡、居所旁,我們身邊隨處可見的昆蟲鄰居,就是本書最重要的主角。

本書獲得 2016 年第 40 屆金鼎獎兒童及少年圖書獎。

The post 居家蟑螂剋星:蜚蠊瘦蜂—《都市昆蟲記》 appeared first on PanSci 泛科學.

怎麼用地球人的眼光看《星海爭霸》蟲族中的蟑螂和刺蛇?

$
0
0

有在玩遊戲的人應該對《星海爭霸》這款即時戰略遊戲並不陌生。《星海爭霸》帶給了我們可以說是遊戲史上最完整的世界(宇宙)觀之一,從裡面科幻、空想的軍事單位到物理、萬物的原則,都有詳細的故事和背景。

當然,這樣的遊戲中當然少不了跟現實科學相關的元素(或漏洞)。

來自Carbot的可愛教室(圖/Starcraft Wiki)

來自 Carbot 的可愛教室。圖/Starcraft Wiki

遊戲中的種族之一——蟲族,是一種能藉由吸收其他物種來強化自己的進化部隊,與其說他們是噁心原始,不如說他們是相當進化的生物,將生存發揮到了極致:誰的基因有用,我就用誰。 儘管整個《星海爭霸》的故事背景是設定在一個外星系,但未來的人類竟然都能在那邊生存了,那我想拿地球稍微比較一下應該不算過分吧!那就把蟲族的的部隊中的兩大菁英:蟑螂和刺蛇,拿出來用地球上的眼光來看吧!

超強「蟑螂」,本體基本上是蛞蝓?

(圖/starcraft wiki)

外星蛞蝓。圖/starcraft wiki

作為整個軍團的核心之一,蟑螂的重要性可以說是無法比擬,理所當然,他們的背景資料也是相當的豐富。從資料庫中,我們可以知道許多關於蟑螂的二三事,讓我們可以好好分析這個物種:

  1. 蟑螂的中心能力是來自一種會分泌的酸性黏液、還能快速自我治療的蛞蝓
  2. 這種蛞蝓是可以從土壤吸收養分治療傷口與受損的組織,並組成外殼
  3. 擁有高度特化的條紋導管,所產生的酵素可以將蟑螂的強酸唾液化為武器。蟑螂利用導管周圍的肌肉,激射出酵素與唾液的混合液。
  4. 有些理論相信蟑螂並非對自己的強酸體液免疫。即使在體內不斷受到強酸腐蝕的情況下,蟑螂強勁的恢復能力仍可保持體內組織結構性的完整

真實世界的蛞蝓們

《星海爭霸》中的蟑螂竟然是一個圍繞著蛞蝓打轉的物種!但是真實世界的蛞蝓真的能辦到嗎?先不討論外星蛞蝓,我們先來看一下地球上的蛞蝓。

蛞蝓的黏液與人類的鼻涕很像,由水、多醣體和一些蛋白質所構成,除了保護蛞蝓不會脫水外,也提供蛞蝓「變速」功能,在不同地形、坡度、生存情況(如遇到危險)下,牠會調整黏液的成分、產量來改變移動能力。至於蛞蝓的外皮,或著是稱為外套模,是與蝸牛相比退化了許多的殼,簡單的鈣質外套模是蛞蝓儲存鹽分的器官和連結器官的介質。

聽說在宇宙的某處,我很猛!圖/By Carla Isabel Ribeiro - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8879390

聽說在宇宙的某處,我很猛!圖/By Carla Isabel Ribeiro – Own work, CC BY-SA 3.0, wikimedia commons.

所以說在地球上你要找到一種能夠吐酸和組成硬殼的蛞蝓,基本上是不可能,因為光自己就受不了了。

但是看看《星海》中蟑螂的介紹:

「蟑螂並非對自己的強酸體液免疫。即使在體內不斷受到強酸腐蝕的情況下,蟑螂強勁的恢復能力仍可保持體內組織結構性的完整」

所以要從蛞蝓變成蟑螂一個最大的門檻在於要有超強的「自我恢復力」。

另外一種蛞蝓的表親:海蛞蝓,某種程度上在化學物質的利用上更勝陸地上的好朋友。海蛞蝓在受到攻擊的時候,第一階段會釋放出墨汁與蛋白質混和的煙霧彈,如果掠食者還是不罷休,海蛞蝓會進入第二階段:釋出一種使掠食者反胃的化學物質,讓他們失去食慾。這種物質是一種生物的次級代謝產物,和植物的防捕食化學機制類似,海綿也會產生類似的物質。所以如果把蟑螂的酸性攻擊當作次級代謝產物的一部分,還蠻合理的,因為他不影響生物本身的生存和生長,沒有它或許蟑螂還活得更好。

  • 香蕉蛞蝓黏液的秘密

能噴酸液的節肢動物—鞭蠍

現在我們跳脫蛞蝓和超強恢復力不談,現實地球上還有什麼會噴酸液的生物,能來和《星海》中的蟑螂比較一下呢?

其實地球上還有一種能噴射酸液的節肢動物——鞭蠍(Whip scorpion, Thelyphonus doriae)。牠外表看似蠍子(但牠其實不是蠍子),除了又圓又大的螯,和比蠍子還要更像外星人的外型外,鞭蠍最吸引人的地方大概就是那個鞭狀的尾巴。鞭蠍的體內沒有毒腺,但在尾部的地方有一個混和乙酸和辛酸的腺體,當鞭蠍被打擾的時候,牠腺體四周的高壓會將這些酸液噴出,這些聞起來像醋的液體雖然對大型動物無害,也不會腐蝕你的相機鏡頭,但足以使牠擊退掠食者,甚至給一些更小型的節肢動物送終。

鞭蠍。圖/By Acrocynus - Acrocynus, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3791054

鞭蠍。圖/By Acrocynus – Acrocynus, CC BY-SA 3.0, wikimedia commons.

如果要找一個蟑螂在地球上的遠親,我想鞭蠍大概毫無爭議,只差把金鋼狼的基因加進去了。

蟲族大砲「刺蛇」

(圖/starcraft wiki)

外星毛毛蟲。圖/starcraft wiki

至於蟲族的玻璃大砲——刺蛇,又是另外一種進化方式了,而且某種程度上看起來更無害。

  1. 在刺蛇的蟲殼盔甲下裝載了上百發的穿甲脊刺,能朝著從地面或空中接近的敵人發射。
  2. 刺蛇那非凡的肌序(4000 條肌肉,而人類只有大約 600 多條)讓牠們可以用令人震驚的速度射出針脊刺,輕易地穿透 2 公分厚的實心新型鋼鐵板,就連在最遠距離也不例外。
  3. 一種毛蟲狀、軀幹擁有細密刺毛包覆的草食生物叫「怠惰蟲」是刺蛇們演化的來源,這些刺毛擁有中度麻痺作用,用於抵擋攻擊。

看起來刺蛇其實是隻帶刺的毛毛蟲囉?

其實要在現實世界中找到帶刺的動物其實不少,如海膽、刺蝟……,還有許多隱性的帶刺動物如刺絲胞動物門的生物,但我第一個想到最接近的物種是豪豬。

看同樣有刺的豪豬,怎麼抵禦敵人?

豪豬(或稱箭豬,但不是刺蝟)除了滿身的刺外其實圓滾滾、還蠻可愛的,但他不是豬,而是齧齒目(也就是老鼠的近親)。豪豬分為新大陸及舊大陸種:舊大陸種的豪豬,刺是長在一個類似甲殼的身體部位上;而新大陸種的刺則是像頭髮一樣,直接與皮肉相連。 當牠們遇到危險時會背對威脅,並把身上的刺「豎起」 (注意不是射出喔),目的並不是攻擊或獵殺,而是讓掠食者攻擊後感到強烈的痛楚,知難而退。

牠身上的刺平均直徑有 0.5 公分,大概像原子筆的筆芯那麼粗,而且前頭有些微的倒鉤,所以一但被箭豬的刺刺到,不但難以拔下來,每次動作還會加深傷口,甚至引發細菌感染。

  • 豪豬與牠身上的刺

但是重點來了,豪豬並不會射出刺。 這些由角蛋白(類似我們的指甲)構成的刺並不會主動出擊,而是因為豪豬一受到驚嚇或威脅,身上會起類似雞皮疙瘩的反應,皮下的豎毛肌會將刺豎起,由於刺的根部脆弱,稍微一碰到就很容易脫落,進而使攻擊者「中鏢」。

說到肌肉在自體防衛上的表現,還有會噴出毒液的眼鏡蛇,牠的毒腺也是經由肌肉擠壓,由毒牙中空部分噴出,所以說到噴射出物體,肌肉可說是功不可沒。

所以我們能發現,藉由肌肉射出脊刺的刺蛇,其實相當接近現實的生物了。想像一下,有一天你皮下肌肉變得十分發達,只要起雞皮疙瘩,就會觸動皮膚表層的毛飛出去,這大概就是刺蛇攻擊的方式了。也就是說刺蛇可能相當於經過改造、能力加強的豪豬,牠們一直處於戰鬥狀態,擁有取之不盡、用之不絕的「疙瘩力量」,讓牠們隨時可以射出脊刺來攻擊敵人。

刺蛇的咬合力大輸地表生物

另外一個我還蠻在意的設定是 :

「刺蛇的厚顎也是演化自怠惰蟲,利用進化來提高雙顎功能後,牠的咬合力有 450 公斤,能夠輕易咬斷肉體、骨骼和新型鋼鐵。」

太多嗎?不,太少了。對比人類僅有 40 公斤的咬合力是強很多沒錯,但是 450 公斤在動物界上只是「還可以」的等級,一票動物如北極熊、老虎、鱷龜、鬣狗等,不僅咬合力跟他不相上下,甚至更強大。

咬合力箇中翹楚如大白鯊、河馬和鱷魚家族,可是遙遙領先刺蛇數倍以上,以鹹水鱷來說,咬合力可達 3000 多公斤。所以你說刺蛇能夠在克普魯星區咬穿新型鋼鐵,我真不知道該說新型鋼鐵中看不重用,還是地球上的猛獸們其實太強大了。搞了半天,或許待在地球上也沒有比較美好,身在強敵中不知強啊。

恐怖的蟲族看似強大,但是在其兇猛的外表底下,我們還是可以在地球上找到一些牠們的影子,讓人不禁想問,如果你是蟲族主宰,你想同化誰?

參考資料:

  1. Aaron, The Vinegaroon and its Acidic Defensive Spray, Next Gen Scientist, 2014.9.8
  2. 23 most strongest animal bites in the world of PSI, Tail and Fur, 2016.11.27
  3. 謝伯娟,〈無殼蝸牛──蛞蝓與半蛞蝓〉,環境資訊中心,2005 年 8 月 9 日。
  4. Spitting cobra, Wikipedia
  5. 豪豬,維基百科
  6. Starcraft Wiki

The post 怎麼用地球人的眼光看《星海爭霸》蟲族中的蟑螂和刺蛇? appeared first on PanSci 泛科學.

Viewing all 38 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>